πgr-CLOSED SETS IN TOPOLOGICAL SPACES

Jeyanthi.V, Janaki.C

1. Department of Mathematics, Sree Narayana Guru College, Coimbatore, India.
2. Department of Mathematics, L.R.G. Govt. College for Women, Tirupur, India.

ABSTRACT

The aim of this paper is to introduce a new class of sets called πgr-closed sets in topological spaces and to study their properties. Further, we define and study πgr-continuity, πgr-irresolute maps and πgr-T₁/₂-Space.

INTRODUCTION

\[RO(X), πO(X), SO(X) \]

Definition 2.2

A subset A of topological space X is said to be

(i) \(a \) ω-closed [14] if \(cl(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \in SO(X) \).

(ii) a generalized closed set [11] (g-closed set) if \(cl(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \in O(X) \).

(iii) a regular generalized closed set [16] (briefly rg-closed set) if \(cl(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \in RO(X) \).

(iv) a weakly generalized closed [14] (briefly wg-closed) if \(cl(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \in O(X) \).

(v) a πg-closed set [10] if \(acl(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \in πO(X) \).

(vi) a semi-pre-open set [1] if \(A \subseteq cl(int(cl(A))) \) and a semi-pre-open set if \(int(cl(int(A))) \subseteq A \).

(vii) a b-open set [2] if \(A \subseteq cl(int(A)) \cup int(cl(A)) \) and its complement is b-closed.

The family of all open sets [regular open, π-open, semi-open] sets of X will be denoted by O(X) resp.

\[RO(X), πO(X), SO(X) \]

Definition 2.1

A subset A of a topological space X is said to be

(i) a pre-open [13] if \(A \subseteq int(cl(A)) \) and pre-closed if \(A \subseteq cl(int(A)) \).

(ii) a semi-open [1] if \(A \subseteq cl(int(A)) \) and semi-closed if \(cl(A) \subseteq A \).

(iii) a regular open [16] if \(A \subseteq cl(int(A)) \) and regular closed if \(A = cl(int(A)) \).

(iv) a α-open [12] if \(A \subseteq cl(int(cl(A))) \) and α-closed if \(cl(cl(A)) \subseteq A \).

(v) a π-open [24] if \(A \) is the finite union of regular open sets and the complement of π-open is π-closed set in X.

Corresponding Author

Jeyanthi.V

Department of Mathematics, Sree Narayana Guru College, Coimbatore, India.

Key Words: - πgr-closed sets, πgr-continuous, πgr-irresolute maps, πgr-T₁/₂ space.

Mathematics Subject Classification: 54A05

© 2012, AJCEM, All Right Reserved.

Asian Journal of Current Engineering and Maths

Journal homepage: http://www.innovativejournal.in/index.php/ajcem

ISSN No. 2277-4920

Asian Journal of Current Engineering and Maths

Corresponding Author

Jeyanthi.V

Department of Mathematics, Sree Narayana Guru College, Coimbatore, India.

Key Words: - πgr-closed sets, πgr-continuous, πgr-irresolute maps, πgr-T₁/₂ space.

Mathematics Subject Classification: 54A05

© 2012, AJCEM, All Right Reserved.

Definition 2.3
A map \(f: X \rightarrow Y \) is said to be
(1) a continuous function \[1\] if \(f^{-1}(V) \) is closed in \(Y \), for every closed set \(V \) in \(Y \).
(2) a regular continuous \[16\] if \(f^{-1}(V) \) is regular closed in \(X \), for every closed set \(V \) in \(Y \).
(3) a semi continuous \[1\] if \(f^{-1}(V) \) is semi closed in \(X \), for every closed set \(V \) in \(Y \).
(4) a \(\omega \)-continuous \[14\] if \(f^{-1}(V) \) is \(\omega \)-closed in \(X \), for every closed set \(V \) in \(Y \).
(5) a rg-continuous \[8\] if \(f^{-1}(V) \) is rg-closed in \(X \), for every closed set \(V \) in \(Y \).
(6) a \(\pi \)-continuous \[6\] if \(f^{-1}(V) \) is \(\pi \)-closed in \(X \), for every closed set \(V \) in \(Y \).
(7) a \(\pi g \)-continuous \[6\] if \(f^{-1}(V) \) is \(\pi g \)-closed in \(X \), for every closed set \(V \) in \(Y \).
(8) a g-continuous \[11,7\] if \(f^{-1}(V) \) is \(g \)-closed in \(X \), for every closed set \(V \) in \(Y \).
(9) a gpr-continuous \[8\] if \(f^{-1}(V) \) is gpr-closed in \(X \), for every closed set \(V \) in \(Y \).
(10) a wg-continuous \[14\] if \(f^{-1}(V) \) is wg-closed in \(X \), for every closed set \(V \) in \(Y \).
(11) a \(\pi g r a \)-continuous \[10\] if \(f^{-1}(V) \) is \(\pi g r a \)-closed in \(X \), for every closed set \(V \) in \(Y \).
(12) a \(\pi g g \)-continuous \[18\] if \(f^{-1}(V) \) is \(\pi g g \)-closed in \(X \), for every closed set \(V \) in \(Y \).
(13) a \(\pi g s \)-continuous \[3\] if \(f^{-1}(V) \) is \(\pi g s \)-closed in \(X \), for every closed set \(V \) in \(Y \).
(14) a \(\pi g b \)-continuous \[22\] if \(f^{-1}(V) \) is \(\pi g b \)-closed in \(X \), for every closed set \(V \) in \(Y \).
(15) a \(\pi g p \)-continuous \[9\] if \(f^{-1}(V) \) is \(\pi g p \)-closed in \(X \), for every closed set \(V \) in \(Y \).
(16) a rga-continuous \[23\] if \(f^{-1}(V) \) is rga-closed in \(X \), for every closed set \(V \) in \(Y \).
(17) a \(\pi r \)-continuous \[15\] if \(f^{-1}(V) \) is \(\pi r \)-closed in \(X \), for every closed set \(V \) in \(Y \).
(18) a wrg-continuous \[19\] if \(f^{-1}(V) \) is wrg-closed in \(X \), for every closed set \(V \) in \(Y \).

Definition 2.4
The closure of a set \(A \) is defined as the intersection of all regular closed sets containing the set and the interior of the set. The above are denoted by rcl(A) and r int(A).

Definition 2.5
A map \(f: X \rightarrow Y \) is said to be
(i) a irresolute function \[16\] if \(f^{-1}(V) \) is regular closed in \(Y \) for every regular closed set \(V \) in \(Y \).
(ii) a regular irresolute \[16\] if \(f^{-1}(V) \) is regular closed in \(Y \) for every regular closed set \(V \) in \(Y \).

3. \(\pi g r \)-Closed Sets In Topological Spaces.
Definition 3.1
A subset \(A \) of \(X \) is called \(\pi g r \)-closed set in \(X \) if \(rcl(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \in \pi \mathcal{O}(X) \).
We denote the family of all \(\pi g r \)-closed (resp. \(\pi g r \)-open) sets in \(X \) by \(\pi G R C(X) \) (resp. \(\pi G R O(X) \)).

Theorem 3.2
1. Every regular closed set is \(\pi g r \)-closed set.
Proof: Follows from the definition.
Remark 3.3
The converse of the above results need not be true as seen in the following example.
Example 3.4
Let \(X = \{a, b, c\} \), \(\tau = \{\varnothing, X, \{a\}, \{b\}, \{a, b\}\} \), The set \(A = \{c\} \) is \(\pi g r \)-closed, but not regular closed.

Theorem 3.4
Every \(g^*r \)-closed set is \(\pi g r \)-closed.
Proof: Let \(A \) be \(g^*r \)-closed set and \(A \subseteq U \), where \(U \) is \(\pi \)-open. Then \(rcl(A) \subseteq U \), where \(U \) is \(\pi \)-open. Hence \(A \) is \(\pi g r \)-closed.

Remark 3.5
The converse of the above need not be true as seen in the following example.
Example 3.6
Let \(X = \{a, b, c, d\} \), \(\tau = \{\varnothing, X, \{c\}, \{d\}, \{c, d\}, \{b, c\}, \{a, c, d\}, \{b, c, d\}\} \). Then \(A = \{a, d\} \) is \(\pi g r \)-closed but not \(g^*r \)-closed.

Theorem 3.7
Every \(\pi g r \)-closed set is rg-closed.
Every \(\pi g r \)-closed set is \(\pi g p \)-closed.
Every \(\pi g r \)-closed set is \(\pi g s \)-closed.
Every \(\pi g r \)-closed set is \(\pi g s p \)-closed.
Every \(\pi g r \)-closed set is \(\pi g b \)-closed.
Every \(\pi g r \)-closed set is \(\pi g b \)-closed.
Every \(\pi g r \)-closed set is \(\pi g b \)-closed.
Every \(\pi g r \)-closed set is \(\pi g b \)-closed.
Every \(\pi g r \)-closed set is \(\pi g b \)-closed.

Proof: Straight forward.

Remark 3.8
The converse of the need not be true as shown in the following examples.
Example 3.9
Let \(X = \{a, b, c, d\} \), \(\tau = \{\varnothing, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\}\} \). Then \(A = \{a, b, c\} \) is \(\pi g r \)-closed sets.

\[\begin{align*}
\pi g r \text{-closed sets} & = \{\varnothing, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\}\} \\
\pi g p \text{-closed sets} & = \{\varnothing, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\}\} \\
\pi g s \text{-closed sets} & = \{\varnothing, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\}\} \\
\pi g s p \text{-closed sets} & = \{\varnothing, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\}\} \\
\pi g b \text{-closed sets} & = \{\varnothing, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\}\} \\
\pi g r \text{-closed sets} & = \{\varnothing, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\}\}
\end{align*} \]
Example 3.10

Let $X = \{a,b,c,d\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{c,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}\}$. Then the set $A = \{b\}$ is π-closed and π^*g-closed in X but not πgr-closed in X.

Remark 3.11

The concepts of semi-closed, πgr-closed sets are independent.

Example 3.12

Let $X = \{a,b,c,d\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{c,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}\}$. Then the set $A = \{b\}$ is πgr-closed but not $\pi\omega$-closed.

Example 3.13

The concepts of wg-closed set and πgr-closed set are independent and is shown in the following example.

Example 3.14

Let $X = \{a,b,c,d\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}\}$. Then the set $B = \{a\}$ is πgr-closed but not wg-closed.

Remark 3.15

The concepts of rgw-closed and πgr-closed are independent and is shown in the following example.

Example 3.16

Let $X = \{a,b,c,d\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{c,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}\}$.

Hence the collection of sets $\{\{b\}, \{a,b\}, \{a,d\}\}$ are rgw-closed but not πgr-closed.

Let $Y = \{a,b,c,d\}$, $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a,b\}\}$. Here the collection of sets $\{\{a\}, \{a,d\}\}$ are πgr-closed but not rgw-closed in X.

Remark 3.19

The concepts of $rg\alpha$-closed sets and πgr-closed sets are independent.

Example 3.20

In example 3.16, the set $A = \{a\}$ is πgr-closed and not $rg\alpha$-closed and the set $B = \{a\}$ is $rg\alpha$-closed but not πgr-closed.

Remark 3.21

The concepts of πgr-closed set and P_{τ}-closed set are independent.

Example 3.22

In the above example 3.16, the set $A = \{a\}$ is P_{τ}-closed but not πgr-closed and the set $B = \{a\}$ is πgr-closed but not P_{τ}-closed.

Remark 3.23

The concepts of πgr-closed, g-closed, α-closed, ω-closed, pre-closed are independent to πgr-closed set.

Example 3.24

Let $X = \{a,b,c,d\}$, $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a,c\}, \{a,c,d\}\}$. Then the closed set $= \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{a,b,c,d\}\}$

πgr-closed set $= \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,b,d\}\}$

ω-closed set $= \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,b,d\}\}$

Remark 3.25

The above discussions are shown in the following diagram.

Remark 3.26

The following is the diagrammatic representation of independent concepts of the sets with πgr-closed sets.

Remark 3.27

The Theorem of two πgr-closed sets is again a πgr-closed sets of X.

Proof:

Assume that A and B are πgr-closed sets in X. Let U be π-open set in X such that $A \cup B \subset U$. Then $A \subset U$ and $B \subset U$. Hence $A \cap B = \emptyset$. That is $A \cap B \subset \emptyset$. Hence $A \cap B$ is an πgr-closed set in X.

Remark 3.28

The intersection of two πgr-closed sets need not be πgr-closed. The fact given above is shown in the following example.

Example 3.29

Let $X = \{a,b,c,d\}$, $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a,c\}, \{a,c,d\}\}$. Let $A = \{a\}$ and $B = \{d\}$ are πgr-closed sets. But their intersection $\{a\}$ is not πgr-closed.

Theorem 3.30

If a subset A of X is both π-open and are πgr-closed, then it is closed.

Proof:

Assume that A and B are π-open set in X such that $A \cup B \subset \emptyset$. Then $A \subset \emptyset$ and $B \subset \emptyset$. Hence $A \cap B = \emptyset$. That is $A \cap B \subset \emptyset$. Hence $A \cap B$ is an πgr-closed set in X.
Let A be a subset of X which is both are π-open and are πgr-closed. Then $rcrA\subset U$ whenever $A\subset U$ and U is π-open. Also, $A\subset rclA$, which implies $rcrA=A$.

$\implies A$ is regular closed. Hence A is closed.

Theorem 3.31

If A is πgr-closed set and $A\subset B\subset rclA$, then B is also πgr-closed set of X.

Proof:

Let A be πgr-closed set in X and $B\subset U$, where U is π-open. Since $A\subset B\subset U$. Since A is πgr-closed, $rclA\subset U$. Given $B\subset rclA$, then $rclB\subset rclA\subset U$.

$\implies rclB\subset U$ and hence B is πgr-closed.

Theorem 3.32

If A is πgr-closed set, then $rcl(A) - A$ does not contain any non-empty πgr-closed set.

Proof:

Let F be a non-empty π-closed set such that $F\subset rcl(A)-A$.

$\implies F\subset A$. The above implies $A\subset F$. Since A is πgr-closed, $X-F$ is π-open.

Since $rclA\subset F$, $F\subset rclA$. Thus, $F\subset rclA\cap(X-rclA)$.

$\implies F\subset \varnothing$, which is a contradiction.

Thus $F=\varnothing$, whence $rcl(A)-A$ does not contain any non-empty πgr-closed set.

Corollary 3.33

Let A be πgr-closed set in X. Then A is regular closed iff $rcl(A)-A$ is πgr-closed.

Proof:

Necessity: Let A be regular closed. Then $rcl(A)=A$ and so $rcl(A)-A=\varnothing$, which is πgr-closed.

Sufficiency: Suppose $rcl(A)-A$ is π-closed. Then $rcl(A)-A=\varnothing$, since A is πgr-closed.

(i.e.) $rcl(A)=A$. $\implies A$ is regular closed.

4. πgr-Open Sets

Definition 4.1

A set $A\subset X$ is called πgr-open set iff its complement is πgr-closed.

The collection of all πgr-open sets is denoted by $\pi gro(X)$.

Remark 4.2

For a subset A of X, $rcr(X-A)=X-rint(A)$.

Theorem 4.3

Let $A\subset X$ is πgr-open iff $F\subset rint(A)$ whenever A is π-closed and $F\subset A$.

Proof:

Necessity: Let A be πgr-open. Let F be π-closed set and $F\subset A$. Then $X-A\subset X-F$, where $X-F$ is π-open.Since A is πgr-open, $X-A$ is πgr-closed. Then $rcr(X-A)<X-F$.

Since $rcr(X-A)=X-rint(A)$. The above implies $X-rint(A)<X-F$. Hence $F\subset rint(A)$.

Sufficiency: Suppose that F is π-closed and $F\subset A$ implies $F\subset rint(A)$. Let $X-A\subset U$, where U is π-open. Then $X-U\subset A$. By hypothesis, $X-U\subset rint(A)$. $\implies X-rint(A)\subset U$. Since $rcr(X-A)=X-rint(A)$. The above implies $rcr(X-A)\subset U$, whenever $X-A$ is π-open. Hence $X-A$ is πgr-closed and hence A is πgr-open.

Theorem 4.4

If $rint(A)\subset B\subset A$ and A is πgr-open, then B is πgr-open.

Proof:

Given $rint(A)\subset B\subset A$. The $X-A\subset X-B\subset rcl(X-A)$.

Since A is πgr-open, $X-A$ is πgr-closed. Then $X-B$ is also πgr-closed. Hence B is πgr-open.
(i) Let A be a regular open. Then X-A is regular closed and so πgr-closed.

⇒A is πgr-open. Hence RO(X) ⊆ πGRO(X)

(ii) Necessity: Let X be πgr-T1/2-space. Let A ∈ πGRO(X).

Then X-A is πgr-closed. Since the space X is πgr-T1/2-space, X-A is regular closed. The above implies A is regular open in X.

Hence RO(X)=πGRO(X)

Sufficiency: Let RO(X)=πGRO(X).

Let A be πgr-closed. Then X-A is πgr-open and X-A ∈ RO(X).

Hence A is regular closed and hence a πgr-T1/2-space.

6. πgr-Continuous and πgr-irresolute functions

Definition 6.1
A function f: (X,τ) → (Y, σ) is called πgr-continuous if every f⁻¹(V) is πgr-closed in X for every closed set V of Y.

A function f: (X,τ) → (Y, σ) is called πgr-irresolute if every f⁻¹(V) is πgr-closed in X for every πgr-closed set V of Y.

Example 6.2
Let X={(a,b,c,d), τ = {φ, X, {a}, {b}, {c}, {d}, {a,b,c,d}, {b,c,d}, {c,d}}}. Then πgr-closed sets in Y are

{φ, Y, {b,c,d}, {a,b,c,d}}

Let Y={(a,b,c,d), σ = {φ, Y, {a,c,d}}}. Let f: (X,τ) → (Y, σ) by f(a)=a, f(b)=b, f(c)=c, f(d)=d. Here the inverse image of the closed set in Y is πgr-closed in X. Hence the function f is πgr-continuous.

Remark 6.3
Every regular continuous is πgr-continuous but not conversely.

Proof: straight forward

Example 6.4
Let X = {a,b,c,d}, τ = {φ, X, {a}, {b}, {c}, {d}, {a,b}, {b,c}, {c,d}, {a,b,c,d}, {a,c,d}, {b,c,d}, {a,b,c,d}}.

Let Y = {a,b,c,d}, σ = {φ, Y, {a,c,d}}, σ c = {φ, Y, {a,c,d}}.

Define f: (X,τ) → (Y, σ) by f(a)=a, f(b)=b, f(c)=c, f(d)=d. Here the inverse image of the closed set (a,c,d) in Y is πgr-closed in X but not regular closed in X. Hence πgr-continuous function need not be regular continuous in X.

Remark 6.5
Every continuous, g-continuous, ω-continuous, semi-continuous, pre-continuous, rw-continuous, wg-continuous, Pr-continuous and rgu-continuous are independent of πgr-continuous. The facts given above are shown in the following examples.

Example 6.6
Let X = {a,b,c,d}, τ = {φ, X, {a}, {b}, {c}, {d}, {a,b,c,d}}.

Let Y = {a,b,c,d}, σ = {φ, Y, {a}, {b}, {c}, {d}, {a,b,c,d}, {a,c,d}, {b,c,d}}.

Define f: (X,τ) → (Y, σ) by f(a)=a, f(b)=b, f(c)=c, f(d)=d. Here the inverse image of the closed set (b) in Y is not πgr-closed in X but πg-closed, πg-closed, πgu-closed, πgb-closed, πcg-closed, πgw-closed, πrw-closed in X. Hence πg-continuous, πgw-continuous, πrgc-continuous, πrgc-continuous, πrgc-continuous functions need not be πgr-continuous.

Remark 6.13
The above discussions are summarized in the following diagrammatic representation.

![Diagram showing the relationships between different types of continuity](image)

Remark 6.14
The composition of two πgr-continuous functions need not be πgr-continuous in the following example.
Example 6.15
Let $X = \{a, b, c, d\}$, $Y = Z$, $\tau = \{\emptyset, X, \{a, b, c, d\}, \{d\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}\}$, $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{c\}, \{a, b\}\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ and $g: (Y, \sigma) \rightarrow (Z, \eta)$ be any two functions. Then

(i) $(gof)^{-1}$ is πgr-continuous if f is πgr-continuous and g is πgr-continuous.

(ii) $(gof)^{-1}$ is πgr-irresolute if f is πgr-irresolute and g is πgr-irresolute.

(iii) $(gof)^{-1}$ is regular πgr-continuous if f is regular πgr-continuous and g is regular πgr-continuous.

Proof:
(i) Let V be regular closed in Z. Then $g^{-1}(V)$ is regular closed in Y. Since g is regular continuous, $(gof)^{-1}(V)$ is πgr-closed in X. Hence $(gof)^{-1}$ is πgr-continuous.

(ii) Let V be closed in Z. Since g is πgr-continuous, $g^{-1}(V)$ is πgr-closed in Y. As f is πgr-irresolute, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is πgr-closed in X. Hence $(gof)^{-1}$ is πgr-irresolute.

(iii) Let V be a closed set in Z. Since g is πgr-continuous, $g^{-1}(V)$ is πgr-closed in Y. As Y is a $\pi gr T_\frac{1}{2}$-space, $g^{-1}(V)$ is regular closed in Y, $g^{-1}(V)$ is closed in Y. Hence $(gof)^{-1}$ is regular closed in X and hence $(gof)^{-1}$ is regular continuous.

Theorem 6.16

Every πgr-irresolute function is πgr-continuous but not conversely.

Proof:
Follows from the definitions.

Example 6.17

Let $X = \{a, b, c\}$, $Y = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a, b, c\}\}$, $\sigma = \{\emptyset, Y, \{a, b\}\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ and $g: (Y, \sigma) \rightarrow (Z, \eta)$ be any two functions. Here the inverse image of the closed sets in Y are πgr-closed in X but the inverse image of the πgr-closed sets in Y are not πgr-closed in X. Hence their composition $(gof)^{-1}$ is not πgr-continuous.

Theorem 6.18

The composition of two πgr-irresolute functions is πgr-irresolute.

Proof:
Straightforward.

Theorem 6.19

Let $f: (X, \tau) \rightarrow (Y, \sigma)$ and $g: (Y, \sigma) \rightarrow (Z, \eta)$ be any two functions. Then

(i) $(gof)^{-1}$ is πgr-continuous if f is regular continuous and g is πgr-continuous.

(ii) $(gof)^{-1}$ is πgr-irresolute if f is πgr-irresolute and g is πgr-irresolute.

(iii) $(gof)^{-1}$ is regular πgr-continuous if f is πgr-continuous and g is regular πgr-continuous.

REFERENCES