PSEUDO INTEGRAL TERNARY SEMIGROUPS

Y. Sarala 1, A. Anjaneyulu 2, D. Madhusudhana Rao 3

1 Dept. of Mathematics, Nagarjuna University, Guntur, A.P. India.
2,3 Dept. of Mathematics, V S R & N V R College, Tenali, A.P. India.

ARTICLE INFO

Corresponding Author
D. Madhusudhana Rao
Dept. of Mathematics, V S R & N V R College, Tenali, A.P. India.
dmrmaths@gmail.com

Key Words: Pseudo Symmetric Ideal, Semipseudo Symmetric Ideal, Kernel, Rees Quotient Ternary Semigroup, Prime Ideal, Semiprime Ideal, Completely Prime Ideal, Completely Semiprime Ideal, Semisimple Element, A-Potent Element, A-Potent Ideal, Pseudo Integral Ternary Semigroup.

ABSTRACT

In this paper, the term, ‘pseudo integral ternary semigroup’ is introduced. It is proved that every pseudo symmetric ternary semigroup with nonempty kernel is a pseudo integral ternary semigroup. It is also proved that an ideal a of a ternary semigroup t is pseudo symmetric iff t\a is a pseudo integral ternary semigroup. If t is a pseudo integral ternary semigroup then it is proved that t is strongly archimedean, t is archimedean, t has no proper completely prime ideals, t has no proper completely semiprime ideals, t has no proper prime ideals, t has no proper semiprime ideals, every element in t is a k-potent element are equivalent. It is proved that if s is a maximal ternary subsemigroup of a pseudo integral ternary semigroup t such that S ∩ K = ∅ then t\s is a minimal prime ideal in t.

©2013, AJCEM, All Right Reserved.

INTRODUCTION

The theory of ternary algebraic system was introduced by lehmer [15] in 1932, but earlier such structures were studied by kasner [11] who gave the idea of n-ary algebras. Ternary semigroups are universal algebras with one associative ternary operation. Anjaneyulu.a [1], initiated the study of pseudo symmetric ideals, radicals, semipseudo symmetric ideals in and n(a)-semigroups. Giri and wazalwar [16] initiated the study of prime radicals in semigroups. Madhusudhana rao, anjaneyulu and gangadharrao ao [17], [18], [19], and [20] initiated the study of pseudo symmetric \gamma-ideals, prime \gamma-radicals and semipseudo symmetric \gamma-ideals in \gamma-semigroups and n(a)-\gamma-semigroups. Hewitt. E. And zuckerman h.s [5] studied about ternary operations in semigroups. Petrich.m [22] introduced about semigroups. Rusakova.s a [12] gave the idea of n-ary group theory. Santiago. M. L and bala ss [14] studied about ternary semigroups. Sioson.f.m [29] gave the idea of regular ternary semigroups. In this paper we introduce the notions of pseudo integral ternary semigroup and characterize pseudo integral semigroup.

2. PRELIMINARIES :

Definition 2.1 : let t be a non-empty set. Then t is said to be a ternary semigroup if there exist a mapping from t×t×t to t which maps (x₁,x₂,x₃) → xᵢₓ₂ₓ₃ satisfying the condition:

\[[x₁ₓ₂ₓ₃]ₓ₄ₓ₅] = [x₁ [x₂ₓ₃ₓ₄]ₓ₅] = [x₁ₓ₂ [x₃ₓ₄ₓ₅]] \forall \ xᵢ \in t, 1 \leq i \leq 5.

Definition 2.2 : let t be ternary semigroup. A non empty subset s of t is said to be a ternary subsemigroup of t if abc ∈ s for all a,b,c ∈ s.

Note 2.3 : a non empty subset s of a ternary semigroup t is a ternary subsemigroup if and only if sss ⊆ s.

Definition 2.4 : an element a of a ternary semigroup t is said to be a left zero of t provided abc = a ∀ b,c ∈ t

Definition 2.5 : an element a of a ternary semigroup t is said to be a right zero of t provided abc = a ∀ b,c ∈ t

Definition 2.6 : an element a of a ternary semigroup t is said to be a two sided zero of t provided abc = bca = a ∀ b,c ∈ t

Definition 2.7 : an element a of a ternary semigroup t is said to be a zero of t provided abc = bca = a ∀ b,c ∈ t

Note 2.8 : if a is a two sided zero of a ternary semigroup t, then a is both left zero and right zero of t.

Definition 2.9 : an element a of a ternary semigroup t is said to be zero of t provided abc = bca = a ∀ b,c ∈ t.

Note 2.10 : if a is a zero of t, then a is a left zero, lateral zero and right zero of t.

Definition 2.11 : a ternary semigroup in which every element is a left zero is called a left zero ternary semigroup.

Definition 2.12 : a ternary semigroup in which every element is a lateral zero is called a lateral zero ternary semigroup.

Definition 2.13 : a ternary semigroup in which every element is a right zero is called a right zero ternary semigroup.

Definition 2.14 : a ternary semigroup with 0 in which the product of any three elements equal to 0 is called a zero ternary semigroup (or) null ternary semigroup.
Note 2.15: let \(t \) be a ternary semigroup. If \(t \) has a zero, let \(T^0 = t \) and if \(t \) does not have a zero, let \(T^0 \) be the ternary semigroup \(t \) with zero adjoined usually denoted by the symbol 0.

Definition 2.16: a nonempty subset \(a \) of a ternary semigroup \(t \) is said to be left ideal of \(t \) if \(b, c \in t, a \in a \) implies \(bca \in a \).

Note 2.17: a nonempty subset \(a \) of a ternary semigroup \(t \) is said to be a left ideal of \(t \) if and only if \(t\vartriangleleft a \).

Definition 2.18: a nonempty subset \(a \) of a ternary semigroup \(t \) is said to be a left ideal of \(t \) if \(b, c \in t, a \in a \) implies \(bca \in a \).

Note 2.19: a nonempty subset \(a \) of a ternary semigroup \(t \) is a left ideal of \(t \) if and only if \(t\vartriangleleft a \).

Definition 2.20: a nonempty subset \(a \) of a ternary semigroup \(t \) is said to be left ideal of \(t \) if \(b, c \in t, a \in a \) implies \(bca \in a \).

Note 2.21: a nonempty subset \(a \) of a ternary semigroup \(t \) is a right ideal of \(t \) if and only if \(a\vartriangleleft t \).

Definition 2.22: a non-empty subset \(a \) of a ternary semigroup \(t \) is said to be a ternary ideal of \(t \) if \(b, c \in t, a \in a \) implies \(bca \in a \).

Definition 2.23: a nonempty subset \(a \) of a ternary semigroup \(t \) is said to be a right ideal of \(t \) if and only if \(t\vartriangleleft a \).

Definition 2.24: an ideal \(a \) of a ternary semigroup \(t \) is said to be a completely prime ideal of \(t \) if \(x, y, z \in t \) and \(xyz \subseteq a \) implies either \(x \in a \text{ or } y \in a \text{ or } z \in a \).

Definition 2.25: an ideal \(a \) of a ternary semigroup \(t \) is said to be a prime ideal of \(t \) if \(x, y, z \in t \) and \(xyz \subseteq a \Rightarrow x \subseteq a \text{ or } y \subseteq a \text{ or } z \subseteq a \).

Definition 2.26: an element \(a \) of a ternary semigroup \(t \) is said to be semisimple if \(n \) is odd natural number then \(a \in \langle a >^n \text{ i.e. } a >^n = \langle a > \).

Definition 2.27: a ternary semigroup \(t \) is called semisimple ternary semigroup provided every element in \(t \) is semisimple.

Definition 2.28: an ideal \(a \) of a ternary semigroup \(t \) is said to be a completely semiprime ideal provided \(x, y \in t, x^n \subseteq a \) for some odd natural number \(n \) if \(a \).

Definition 2.29: an ideal \(a \) of a ternary semigroup \(t \) is said to be semiprime ideal provided \(x, y, z \in t, x^n \subseteq a \) for some odd natural number \(n \) implies \(x \subseteq a \).

Definition 2.30: a ternary semigroup \(t \) is said to be an archimedean ternary semigroup provided for any \(a, b \in t \) there exists an odd natural number \(n \) such that \(a^n \subseteq b \).

Definition 2.31: a ternary semigroup \(s \) is said to be a strongly archimedean ternary semigroup provided for any \(a, b \in t \), there is an odd natural number \(n \) such that \(a^n \subseteq b \).

Theorem 2.32: every strongly archimedean ternary semigroup is an archimedean ternary semigroup.

Definition 2.33: an ideal \(a \) of a ternary semigroup \(t \) is said to be a pseudo symmetric provided \(x, y, z \in t, xyz \subseteq a \) implies \(xyzt \subseteq a \) for all \(s, t \in t \).

Definition 2.34: a ternary semigroup \(t \) is said to be a pseudo symmetric provided every ideal is a pseudo symmetric ideal.

Theorem 2.35: let \(a \) be a semipseudo symmetric ideal of a ternary semigroup \(t \). Then the following are equivalent.

1) \(a \) is the intersection of all completely prime ideals of \(t \) containing \(a \).

2) \(a \) is the intersection of all minimal completely prime ideals of \(t \) containing \(a \).

3) \(a \) is the minimal completely semiprime ideal of \(t \) relative to containing \(a \).

4) \(a \) is \(\{ x \in a \mid x^n \subseteq a \text{ for some odd natural number } n \} \).

5) \(a \) is the intersection of all prime ideals of \(t \) containing \(a \).

6) \(a \) is the intersection of all minimal prime ideals of \(t \) containing \(a \).

7) \(a \) is the minimal prime ideals of \(t \) relative to containing \(a \).

8) \(a \) is \(\{ x \in a \mid x^n \subseteq a \text{ for some odd natural number } n \} \).

Theorem 2.36: if \(t \) is a semipseudo symmetric ternary semigroup, then the following are equivalent.

1) \(t \) is a strongly archimedean semigroup.

2) \(t \) is an archimedean semigroup.

3) \(t \) has no proper completely prime ideals.

4) \(t \) has no proper completely semiprime ideals.

5) \(t \) has no proper prime ideals.

6) \(t \) has no proper semiprime ideals.

Theorem 2.37: every prime ideal \(p \) minimal relative to containing a pseudo symmetric ideal \(a \) in a ternary semigroup \(t \) is completely prime.

3. PSUDO INTEGRAL TERNARY SEMIGROUPS:

Definition 3.1: a \(t \) be an ideal of a ternary semigroup \(t \). An element \(x \in t \) is said to be a a-potent provided there exists an odd natural number \(n \) such that \(x^n \subseteq a \).

Definition 3.2: a \(t \) be an ideal of a ternary semigroup \(t \). An ideal \(b \) of \(t \) is said to be a a-potent provided there exists an odd natural number \(n \) such that \(b^n \subseteq a \).

Note 3.3: if \(a \) is an ideal of a ternary semigroup \(t \), then every element of \(a \) is an a-potent element of \(t \) and \(a \) itself is an a-potent ideal of \(t \).

Definition 3.4: a \(t \) be an ideal of a ternary semigroup \(t \). An a-potent element \(x \) is said to be a nontrivial a-potent element of \(t \) if \(x \in a \).

Theorem 3.8: if \(m \) is a maximal ideal in a ternary semigroup \(t \) containing a pseudo symmetric ideal \(a \), then \(m \) contains all a-potent elements in \(t \) or \(t \) \(m \) is a singleton which is a-potent.

Proof: suppose \(m \) does not contain all a-potent elements. Let \(a \in t \) be any a-potent element and \(b \) be any element in \(t \) \(m \).

Since \(m \) is a maximal ideal, \(m \cup < a > = m \cup < b > \Rightarrow < a > = < b > \).

Since \(b \notin m \), we have \(b \in < a > \).

Let \(n \) be the least positive odd integer such that \(a^n \subseteq b \).

Since \(a \) is a pseudo symmetric ideal then \(a \) is a semipseudo symmetric ideal and hence \(a^{n+1} \subseteq a \).

Therefore \(k^2 \subseteq a \) and hence \(b \) is an a-potent element.

Thus every element in \(t \) \(m \) is a-potent.

Similarly we can show that if \(m \) is the least positive odd integer such that \(b^p \subseteq a \), then \(a^n \subseteq a \) for some odd natural number \(n \) such that \(a^n \subseteq b \).

Since \(m \) is a maximal ideal, we have \(a \leq b > \Rightarrow < a > = < b > \).

Now since \(a \) is a pseudo symmetric ideal, we have \((abc)^p = (abc)^p \subseteq a \) for some \(s, t \in t \).

Let \(a, b, c \in t \).

Since \(m \) is a maximal ideal, we have \(< a > = b > = < c > \).

So \(b, c \in < a > \Rightarrow b = sat, c = uvw \).

Since \(a \subseteq b \) and hence \(a = sbt \) for some \(s, t \in t \).

Now since \(a \) is a pseudo symmetric ideal, we have \((abc)^p = (abc)^p \subseteq a \) for some \(s, t \in t \).

Therefore \(k^2 \subseteq a \) and hence \(b \) is an a-potent element.

Which is not true.
In both the cases we have a contradiction. Hence \(a = b \).
Similarly we show that \(c = a \).

Definition 3.9 : the intersection of all ideals of a ternary semigroup \(t \) is called kernel of \(t \) and it is denoted by \(k \).

Definition 3.10 : a ternary semigroup \(t \) with nonempty kernel \(k \) is said to be a pseudo integral ternary semigroup provided \(k \) is a pseudo symmetric ideal.

Theorem 3.11 : every pseudo symmetric ternary semigroup with nonempty kernel is a pseudo integral ternary semigroup.

Proof: let \(t \) be a pseudo symmetric ternary semigroup. Then every ideal of \(t \) is pseudo symmetric. Since kernel is the intersection of all ideals and hence kernel is again an ideal. So kernel is a pseudo symmetric ideal. Therefore \(t \) is a pseudo integral ternary semigroup.

Theorem 3.12 : if \(t \) is a ternary semigroup with empty kernel then \(t^0 \) is a pseudo integral ternary semigroup.

Proof: since \(t \) has empty kernel, the kernel of \(t^0 \) is \(\{0\} \).

\[\text{Suppose } abc = 0. \]
Then \(a = 0 \) or \(b = 0 \) or \(c = 0 \) and hence \(at^b \text{e}c = 0. \) Thus \(\{0\} \) is a pseudo symmetric ideal. Therefore the ternary semigroup \(t^0 \) is a pseudo integral ternary semigroup.

Definition 3.14 : let \(a \) be any ideal in a ternary semigroup \(t \). Put \(t/a = t \{a\} \cup \{a\} \). Define ternary multiplication in \(t/a \) as follows. Let \(a, b, c \in t/a \), \(\{abc\} = a \cdot b \cdot c \) if \(a \cdot b \cdot c \in t/a \), \(\{abc\} = a \), otherwise. Then \(t/a \) is a ternary semigroup. The ternary semigroup \(t/a \) is called rees quotient (difference) ternary semigroup of \(t \) over the ideal \(a \).

Theorem 3.15 : let \(t \) be a ternary semigroup. An ideal \(a \) in \(t \) is a pseudo symmetric ideal if the rees quotient (difference) ternary semigroup \(t/a \) is a pseudo integral ternary semigroup.

Proof: clearly \(a \) is the zero of the ternary semigroup \(t/a \) and hence kernel of \(t/a \) is an itself. So \(a \) is a pseudo symmetric ideal iff \(t/a \) is a pseudo integral ternary semigroup.

Corollary 3.16 : every minimal prime ideal in a pseudo integral ternary semigroup is completely prime.

Proof: let \(t \) be a pseudo integral ternary semigroup. Then kernel \(k \) is pseudo symmetric ideal. Let \(p \) be a minimal prime ideal in \(t \). Clearly \(k \subseteq p \). Therefore \(p \) is a minimal ideal relative to containing a pseudo symmetric ideal \(k \) by theorem 2.37, \(p \) is completely prime.

Notation 3.17 : (1) we denote \(n(k) = \{\text{the set of all k-potent elements in t}\} \). (2) \(m^+, p^+, q^+ \) denote respectively the intersection of all maximal ideals, completely prime ideals and prime ideals of a ternary semigroup.

Corollary 3.17 : every prime ideal in a pseudo integral ternary semigroup \(t \) contains all k-potent elements and hence \(n(k) \subseteq q^+ \).

Proof: let \(p \) be a prime ideal of \(t \) and let \(x \) be a k-potent element.

Then \(x^p \in k \) for some odd natural number \(n \).
Since \(t \) is a pseudo integral ternary semigroup, \(k \) is a pseudo symmetric ideal.
\[\text{We have } <x^p> \subseteq k \Rightarrow <x^p> \subseteq p \Rightarrow <x> \subseteq p \Rightarrow x \in p. \]
Therefore \(p \) contains all k-potent elements. \(x \in p \) for every \(p \Rightarrow x \in q^+ \).
Therefore \(n(k) \subseteq q^+ \).

Corollary 3.18 : if \(t \) is a pseudo integral ternary semigroup then \(n(k) = Q^+ = P^* \).

Proof: since \(t \) is a pseudo integral ternary semigroup, \(k \) is a pseudo symmetric ideal.
By theorem 2.35, we have \(K_1 = K_2 = K_3 \). Therefore
\[K_1 = P^*, K_2 = N_0(K), K_3 = Q^*. \]
Hence \(N_0(K) = Q^* = P^* \).

Theorem 3.19 : let \(t \) be a pseudo integral ternary semigroup. Then the following are equivalent.
1. \(t \) is a strongly archimedian ternary semigroup.
2. \(t \) is an archimedian ternary semigroup.
3. \(t \) has no proper completely prime ideals.
4. \(t \) has no proper completely semiprime ideals.
5. \(t \) has no proper prime ideals.
6. \(t \) has no proper semiprime ideals.
7. Every element in \(t \) is a k-potent element.

Proof: since \(t \) is a pseudo integral ternary semigroup, \(k \) is a pseudo symmetric ideal. By theorem 2.32, (1) implies (2) is clear and also by theorem 2.36, (2) implies (3), (4), (5) and (6) are equivalent.

(5) \(\Rightarrow (7) \) : suppose \(t \) has no proper prime ideals \(\Leftrightarrow Q^* = T \Leftrightarrow N_0(K) = T \)
\(\Leftrightarrow \) every element in \(t \) is a k-potent element.

(7) \(\Rightarrow (1) \) : let \(t \) be a k-potent element. Let \(a \in t, b \in t \) \(\Rightarrow \) for some odd natural number \(n \), \(a^n e K \Rightarrow <a^n> \subseteq K < b > \)
\(\subseteq <a >^n < b > \). Therefore \(t \) is strongly archimedian.
Hence the given conditions are equivalent.

Theorem 3.20 : let \(t \) be a pseudo integral ternary semigroup \(\Rightarrow \) the nonempty kernel \(k \) of \(t \) is a pseudo symmetric ideal. Since \(m \) is a maximal ideal in \(t \Rightarrow k \subseteq m \). Therefore \(m \) is a maximal ideal in \(t \) containing a pseudo symmetric ideal \(k \).
By theorem 3.8, \(m \) contains all k-potent elements in \(t \) or \(t/m \) is singleton which is k-potent.

Theorem 3.21 : if \(s \) is a maximal ternary subsemigroup of a pseudo integral ternary semigroup \(t \) such that \(S \cap K = \emptyset \), then \(t/s \) is a minimal prime ideal in \(t \).

Proof: let \(y, z \in t/s \) and let \(s' \) be the ternary subsemigroup of \(t \) generated by \(s \cup \{y\} \cup \{z\} \).
Since \(s' \) contains \(s \) properly, we have \(S' \cap K = \emptyset \).
There exist \(x, x_2, x_s \in S \) for some odd natural number \(n \) such that \(x_1 y^{x_2} z^{x_s} \in K \). Put \(x = x_1 x_2 x_s \in S \).
Clearly \(x \in s \).
Since \(k \) is a pseudo symmetric ideal, we obtain \((xyz)^{t+s+t+u+u+u+u+u} \in K \), by suitable insertion of some elements. Thus \(yxz \) is k-potent. Therefore for \(s, t \in t \), \(yxz \) is k-potent. If \(yxz \in k \), then since \(x_1 y^{x_2} z^{x_s} \in K \), we have \(t/y \in t/s \) for all \(s, t \in t \).
This is a contradiction. Thus \(t/y \in t/s \) for all \(s, t \in t \).
Similarly we can show that \(t/yz \in t/s \) and \(t/yz \in t/s \) for all \(s, t \in t \).
Therefore \(t/s \) is an ideal in \(t \).
Since \(s \) is a ternary subsemigroup of \(t \), \(t/s \) is a completely prime ideal and hence \(t/s \) is a prime ideal.
Now we show that \(t/s \) is a maximal ideal.
Let \(p \) be any prime ideal of \(t \) such that \(p \subseteq t/s \).
Let \(y \in t/s \). Then as above there is an element \(x, y, z, s, t \) such that \(yxz < k \)-potent for all \(s, t \in t \).
Since \(p \) is a prime ideal, either \(x \in p \) or \(y \in p \) or \(z \in p \).
Since \(x, z \in S \), we have \(x \not\in p, z \notin p \) and hence \(y \in p \). Therefore \(p = t\backslash s \). So \(t\backslash s \) is a minimal prime ideal in \(t \).

Theorem 3.22: let \(t \) be a pseudo integral ternary semigroup. A subset \(s \) of \(t \) is a maximal ternary subsemigroup of \(t \) with \(S \cap K = \emptyset \) iff \(p = t\backslash s \) is a minimal prime ideal of \(t \).

Proof: if \(s \) is a maximal ternary subsemigroup with \(S \cap K = \emptyset \), then by theorem 3.21, \(p = t\backslash s \) is a minimal prime ideal of \(t \). Conversely suppose that \(p = t\backslash s \) is a minimal prime ideal of \(t \). Since \(t \) is a pseudo integral ternary semigroup and \(p \) is a minimal prime ideal of \(t \), then corollary 3.16, \(p \) is completely prime and hence \(s \) is a ternary subsemigroup of \(t \). Since \(p \) is minimal, we have \(s \) is a minimal ternary subsemigroup of \(t \) with \(S \cap K = \emptyset \).

REFERENCES

29. Sioson, F. M., Ideal Theory In Ternary Semigroups, Math. Japan, 10 (1963), 63-84.