g^p-LOCALLY CLOSED SETS AND g^p-LOCALLY CLOSED FUNCTIONS

K.Alli1*, S.Pious Missier2, A. Subramanian1

1P.G.Department of Mathematics, The M.D.T. Hindu College, Tirunelveli, Tamil Nadu (India)-627010.
2P.G.Department of Mathematics, V.O. Chidamaram College, Thoothukudi, Tamil Nadu (India)-628008.

ARTICLE INFO

Corresponding Author

K.Alli

P.G. Department of Mathematics, The M.D.T. Hindu College, Tirunelveli, Tamil Nadu (India)-627010.

Key Words: Locally closed set, g^p-Locally closed set, g^p-locally closed set, g^p-locally closed function and submaximal space.

ABSTRACT

In this paper, we introduce a new class of sets g^p-Locally closed sets, g^p-Locally closed functions and their properties.

2001 AMS Classification: 54A05, 54C10

©2013, AJCEM, All Right Reserved.

INTRODUCTION

N.Levine [6] introduced the class of g-closed sets. M.K.R.S.Veerakumar introduced several generalized closed sets namely, g^+-closed sets, g^+-locally closed sets and g^+-lc functions. The authors [9] have already introduced g^p-closed sets and their properties. In this paper, we introduce g^p-Locally closed sets, g^p-Locally closed functions and their properties.

2.PRELIMINARIES

Throughout this paper, (X,τ) (or X) represents topological spaces on which no separation axioms are assumed unless otherwise mentioned. A subset A of a space (X,τ), cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A respectively. We recall the following definitions which are useful in the sequel.

Definition2.1: A subset A of a space (X,τ) is called a (i) **generalized closed** (briefly g-closed) set [6] if cl(A) ⊆ U whenever A ⊆ U and U is open in (X,τ); the complement of a g-closed set is called a g-open [6] set.

(ii) **regular open** [5] set if A=cl(int(A)) and regular closed [5] set if cl(int(A))=A.

(iii) **regular generalized closed** (briefly rg-closed) set [8] if cl(A) ⊆ U whenever A ⊆ U and U is regular open in (X,τ); the complement of a rg-closed set is called a rg-open [8] set.

(iv) **g-generalized closed** (briefly gc-closed) set [7] if acl(A) ⊆ U whenever A ⊆ U and U is open in (X,τ); the complement of an gc-closed set is called an gc-open [7] set.

(v) **g^+-closed** set [12] if cl(A) ⊆ U whenever A ⊆ U and U is g^+-open in (X,τ); the complement of a g^+-closed set is called a g^+-open [12] set.

(vi) **g^p-closed** set [9] if pcl(A) ⊆ U whenever A ⊆ U and U is gc-open in (X,τ); the complement of a g^p-closed set is called a g^p-open [9] set.

(vii) **g^*-closed** set [14] if cl(A) ⊆ U whenever A ⊆ U and U is semi open in (X,τ); the complement of a g^*-closed set is called a g^*-open [14] set.

(viii) **g^+**-closed set [11] if cl(A) ⊆ U whenever A ⊆ U and U is g-open in (X,τ); the complement of a g^+-closed set is called a g^+-open [11] set.

Definition2.2: A subset S of a space (X,τ) is called a (i) **regular generalized locally closed** (briefly rglc) set [1] if S=G∩F, where G is rg-open and F is rg-closed in (X,τ).

(ii) **rglc^* set** [1] if there exist a rg-open set G and a closed set F of (X,τ) such that S=G∩F.

(iii) **rglc^*^* set** [1] if there exist an open set G and a rg-closed set F of (X,τ) such that S=G∩F.

(iv) **generalized locally closed** (briefly glc) set [3] if S=G∩F, where G is g-open and F is g-closed in (X,τ). The class of all generalized locally closed sets in (X,τ) is denoted by GLC(X,τ).

(v) **GLC^* set** [3] if there exist a g-open set G and a closed set F of (X,τ) such that S=G∩F and

(vi) **GLC^*^* set** [3] if there exist an open set G and a gc-closed set F of (X,τ) such that S=G∩F.

(vii) **g^+-locally closed** [13] (briefly g^+lc) set if S=G∩F, where G is g^+-open in (X,τ) and F is g^+-closed in (X,τ). The class of all g^+-locally closed sets in (X,τ) is denoted by G^+LC(X,τ).

(viii) **G^+LC^* set** [13] if there exists a g^+-open set G and a closed set F of (X,τ) such that S=G∩F and

(ix) **G^+LC^*^* set** [13] if there exists an open set G and a g^+-closed set F of (X,τ) such that S=G∩F.

(x) **g^+-locally closed** [16] (briefly g^+lc) set if S=G∩F, where G is g^+-open in (X,τ) and F is g^+-closed in (X,τ). The class of all g^+-locally closed sets in (X,τ) is denoted by G^+LC(X,τ).

(xi) **G^+LC^* set** [16] if there exists a g^+-open set G and a closed set F of (X,τ) such that S=G∩F.
(xii) **GLC** [16] set if there exists an open set G and a g*-closed set F of (X,τ) such that S=G∩F.
(xiii) g**-locally closed** [15] (briefly g**lc**) set if S=G∩F, where G is g**-open in (X,τ) and F is g**-closed in (X,τ).
The class of all g**-locally closed sets in (X,τ) is denoted by **GLC**(X,τ).
(xiv) **GLC** [15] set if there exists a g**-open set G and a g**-closed set F of (X,τ) such that S=G∩F.
(xv) **GLC** [15] set if there exists an open set G and a g**-closed set F of (X,τ) such that S=G∩F.

Definition 2.3. A topological space (X,τ) is called
(i) **submaximal** if every dense subset is open and
(ii) **submaximal** [1] if every dense subset is g**-open.

Definition 2.4. A function f:(X,τ)→(Y,σ) is called
(i) **LC-continuous** [4] if f**((V)€GLC(X,τ)) for each open set V of (Y,σ).
(ii) **GLC-continuous** [3] if f**((V)€GLC**‘(X,τ)) for each open set V of (Y,σ).
(iii) **LC-continuous** [13] if f**((V)€GLC**(X,τ)) for each open set V of (Y,σ).
(iv) **LC-continuous** [13] if f**((V)€GLC**(X,τ)) for each open set V of (Y,σ).
(v) **LC-continuous** [16] if f**((V)€GLC**(X,τ)) for each open set V of (Y,σ).
(vi) **LC-continuous** [13] if f**((V)€GLC**(X,τ)) for each open set V of (Y,σ).
(vii) **LC-continuous** [16] if f**((V)€GLC**(X,τ)) for each open set V of (Y,σ).
(viii) **LC-continuous** [16] if f**((V)€GLC**(X,τ)) for each open set V of (Y,σ).
(ix) **LC-continuous** [16] if f**((V)€GLC**(X,τ)) for each open set V of (Y,σ).
(x) **LC-continuous** [16] if f**((V)€GLC**(X,τ)) for each open set V of (Y,σ).
(xi) **LC-continuous** [16] if f**((V)€GLC**(X,τ)) for each open set V of (Y,σ).
(xii) **LC-continuous** [16] if f**((V)€GLC**(X,τ)) for each open set V of (Y,σ).
(xiii) **LC-continuous** [16] if f**((V)€GLC**(X,τ)) for each open set V of (Y,σ).
(xiv) **LC-continuous** [16] if f**((V)€GLC**(X,τ)) for each open set V of (Y,σ).
(xv) **LC-continuous** [16] if f**((V)€GLC**(X,τ)) for each open set V of (Y,σ).
(xvi) **LC-continuous** [16] if f**((V)€GLC**(X,τ)) for each open set V of (Y,σ).

3. g**p-LOCALLY CLOSED SETS**

Introduction defined below

Definition 3.1. A subset S of a space (X,τ) is called g**-pre locally closed** if S=G∩F, where G is g**p-open and F is g**p-closed in (X,τ).
The class of all g**-pre locally closed sets in (X,τ) is denoted by **G**P**(X,τ).**

Definition 3.2. For a subset S of (X,τ), **G**P**(X,τ)** if there exists a g**p-open set G and a closed set F of (X,τ) such that S=G∩F.

Definition 3.3. For a subset S of (X,τ), **G**P**(X,τ)** if there exist an open set G and a g**p-open set F of (X,τ) such that S=G∩F.

Proposition 3.4:
(i) If S€GLC(X,τ), then S€G**P**(X,τ), S€GLC**(X,τ) and S€G**P**(X,τ) and S€G**P**(X,τ).
(ii) If S€LC(X,τ), then S€G**P**(X,τ), S€GLC**(X,τ) and S€G**P**(X,τ) and S€G**P**(X,τ).
(iii) If S€GLC(X,τ) {[resp. G** LC**‘(X,τ) and G** LC**(X,τ)}], then S€G**P**(X,τ), S€GLC**(X,τ) and S€G**P**(X,τ).
(iv) If S€GLC(X,τ) {[resp. G** LC**‘(X,τ) and G** LC**(X,τ)}], then S€G**P**(X,τ), S€GLC**(X,τ) and S€G**P**(X,τ).
(v) If S€GLC(X,τ) {[resp. G** LC**‘(X,τ) and G** LC**(X,τ)}], then S€G**P**(X,τ), S€GLC**(X,τ) and S€G**P**(X,τ).

vi.i. If S€GLC(X,τ) {[resp. G** LC**‘(X,τ) and G** LC**(X,τ)}], then S€G**P**(X,τ), S€GLC**(X,τ) and S€G**P**(X,τ).

vii. If S€GLC(X,τ) {[resp. G** LC**‘(X,τ) and G** LC**(X,τ)}, then S€G**P**(X,τ), S€GLC**(X,τ) and S€G**P**(X,τ).

viii. If S€GLC(X,τ) {[resp. G** LC**‘(X,τ) and G** LC**(X,τ)}, then S€G**P**(X,τ), S€GLC**(X,τ) and S€G**P**(X,τ).

The proof is obvious from the definitions 2.2, 3.1, 3.2 and 3.3.

The converses of the proposition 3.4 need not be true as seen from the following examples.

Example 3.5. Let X=({a,b,c},σ), Y=({a,b},τ), then X**P**(X,Y) and X**P**(Y,X).

Example 3.6. Let X=({a,b,c},σ), Y=({a,b},τ), then X**P**(X,Y) and X**P**(Y,X).

Example 3.7. Let X and Y be as in the example 3.6, then X**P**(X,Y) and X**P**(Y,X).

Example 3.8. Let X=({a,b,c},σ), Y=({a,b},τ), then X**P**(X,Y) and X**P**(Y,X).

Example 3.9. Let X=({a,b,c},σ), Y=({a,b},τ), then X**P**(X,Y) and X**P**(Y,X).

Example 3.10. Let X and Y be as in the example 3.9, then X**P**(X,Y) and X**P**(Y,X).

Example 3.11. Let X and Y be as in the example 3.8, then X**P**(X,Y) and X**P**(Y,X).

Theorem 3.12. For a subset S of (X,τ) the following are equivalent
(i) S€G**P**(X,τ).
(ii) S=P∩cl(S) for some g**p-open set P.
(iii) cl(S)-S is g**p-open.
(iv) SU(X-cl(S))=cl(S) for some g**p-open set P.
(v) S€G**P**(X,τ).

Proof.
(i) Let S€G**P**(X,τ). Then there exist a g**p-open set P and a closed set F in (X,τ) such that S=P∩F. Since S≤ P and S≤ cl(S), we have S=P∩cl(S). Conversely, since cl(S)≤ F, P∩cl(S)≤ P∩cl(S), we have that S=P∩cl(S).

(ii) => (i) Since P is g**p-open and cl(S) is closed, we have P∩cl(S)€G**P**(X,τ).

(iii) => (iv) Let f€cl(S)-S. By assumption F is g**p-closed. X-F=X∩F=cl(S)-S=SU(X-cl(S)). Since F is g**p-open, we have that SU(X-cl(S)) is g**p-open. Then X-U is g**p-closed. X-U-S=SU(X-cl(S))=S=SU(S). Therefore S=Ucl(S) for the g**p-open set U.

(iv) => (ii) Let U=SU(X-cl(S)). By assumption, U is g**p-open. Now U∩cl(S)=SU(X-cl(S))∩cl(S)∪SU(S)∪SU(S)=SU(S). Therefore S=Ucl(S) for the g**p-open set U.

Theorem 3.13. A topological space (X,τ) is called g**p-submaximal** if every dense set is g**p-open.

Theorem 3.14. Let (X,τ) be a topological space. Then (i) If (X,τ) is submaximal, then it is g**p-submaximal.
(ii) If \((X, \tau)\) is rg-submaximal, then it is \(g^p\)-submaximal.

Remark 3.15: The converses of the theorem 3.14 need not be true as seen from the following examples.

Example 3.16: Let \(X = \{a, b, c\}\) and \(\tau = (\Phi, X, \{a, \{a, c\}\})\). \((X, \tau)\) is \(g^p\)-submaximal but not submaximal.

Example 3.17: Let \(X\) and \(\tau\) be as in the example 3.9, \((X, \tau)\) is \(g^p\)-submaximal but not \(g^p\)-submaximal.

Corollary 3.18: A topological space \((X, \tau)\) is \(g^p\)-submaximal if and only if \(g^p\)-closed subset of \((X, \tau)\) is \(g^p\)-closed.

Theorem 3.21: If \(A\in G\) and \(A\) is \(g^p\)-closed, then \(A\) is \(p\)-closed.

Proof: Let \(S\in G\) and \(S\subseteq A\). Since \((X, \tau)\) is \(g^p\)-closed, \(S\) is \(g^p\)-closed.

Theorem 3.22: If \((X, \tau)\) is \(g^p\)-submaximal, then \(X\) is \(g^p\)-closed.

Proof: Let \(A\subseteq X\) be a closed set in \((X, \tau)\). Since \((X, \tau)\) is \(g^p\)-submaximal, \(A\subseteq X\) is \(g^p\)-closed.

Theorem 3.23: If \(A\subseteq X\) is \(g^p\)-closed, then \(A\) is \(g^p\)-closed.

Proof: Let \(S\in G\) and \(S\subseteq A\). Since \((X, \tau)\) is \(g^p\)-closed, \(S\) is \(g^p\)-closed.

Theorem 3.24: If \(A\subseteq X\) is \(g^p\)-closed, then \(A\) is \(g^p\)-closed.

Proof: Let \(S\in G\) and \(S\subseteq A\). Since \((X, \tau)\) is \(g^p\)-closed, \(S\) is \(g^p\)-closed.

Theorem 3.25: If \(Z\) is closed and open in \((X, \tau)\) and \(A\in G\) and \(A\subseteq Z\), then \(A\) is \(g^p\)-closed.

Proof: Let \(A\subseteq Z\). Then there exist a \(g^p\)-open set \(G\) and a \(g^p\)-closed set \(F\) such that \(A\subseteq G\cap F\). Since \((X, \tau)\) is \(g^p\)-closed, \(A\subseteq G\cap F\) is \(g^p\)-closed.

Theorem 3.26: If \(Z\) is \(g^p\)-closed, open subset of \((X, \tau)\) and \(A\in G\) and \(A\subseteq Z\), then \(A\) is \(g^p\)-closed.

Proof: Let \(A\subseteq Z\). Then there exist a \(g^p\)-open set \(G\) and a \(g^p\)-closed set \(F\) such that \(A\subseteq G\cap F\). Since \((X, \tau)\) is \(g^p\)-closed, \(A\subseteq G\cap F\) is \(g^p\)-closed.

Proposition 3.27: If \(A\subseteq X\) and \(B\subseteq X\), then \(A\cap B\) is \(g^p\)-closed.

Proof: Let \(S\in G\) and \(S\subseteq A\). Since \((X, \tau)\) is \(g^p\)-closed, \(S\) is \(g^p\)-closed.

Theorem 3.28: If \(Z\) is \(g^p\)-closed, then \(Z\subseteq X\).

Proof: Let \(S\in G\) and \(S\subseteq Z\). Since \((X, \tau)\) is \(g^p\)-closed, \(S\) is \(g^p\)-closed.

Theorem 3.29: If \(A\subseteq X\) is \(g^p\)-closed, then \(A\subseteq X\).

Proof: Let \(S\in G\) and \(S\subseteq A\). Since \((X, \tau)\) is \(g^p\)-closed, \(S\) is \(g^p\)-closed.

Definition 4.1: A function \(f: (X, \tau)\) is called \(G^p\)-continuous if \(f^{-1}(V)\) is \(G^p\)-closed for every \(V\subseteq X\).

Definition 4.2: A function \(f: (X, \tau)\) is called \(G^p\)-irresolute if \(f^{-1}(V)\) is \(G^p\)-open for every \(V\subseteq X\).

Proposition 4.3: If \(f\) is \(GLC\)-continuous, then it is \(G^p\)-continuous.

Theorem 4.4: If \(f\) is \(G^p\)-continuous, then it is \(G^p\)-irresolute.

Definition 4.5: A function \(f: (X, \tau)\) is called \(G^p\)-irresolute if \(f^{-1}(V)\) is \(G^p\)-closed for every \(V\subseteq X\).

Theorem 4.6: If \(f\) is \(G^p\)-irresolute, then it is \(G^p\)-continuous.
(ii) If f is LC-continuous, then it is $G^{\text{PLC}}, G^{\text{PLC}^*}$ and G^{PLC^*}.
(iii) If f is G^a LC [resp. G^a LC* and G^a LC*] -continuous, then it is $G^{\text{PLC}}, G^{\text{PLC}^*}$ and G^{PLC^*}-continuous.
(iv) If f is G^a LC[resp. G^a LC* and G^a LC*] -continuous, then it is $G^{\text{PLC}}, G^{\text{PLC}^*}$ and G^{PLC^*}-continuous.
(v)) If f is G^a LC [resp. G^a LC* and G^a LC*] -continuous, then it is $G^{\text{PLC}}, G^{\text{PLC}^*}$ and G^{PLC^*}-continuous.

Proof: Follows from the proposition 3.4, definitions, theorem 17 and theorem 1 of Arockiarani et al. [1]. The converses of the proposition 4.3 need not be true as seen from the following examples.

Example 4.4: Let $X=\{a,b,c\}=Y, \tau=\{\Phi, X, \{a,b\}\}$ and $\sigma=\{\Phi, Y, \{b,c\}\}$. Define $f: (X, \tau) \to (Y, \sigma)$ by $f(a)=a, f(b)=b$ and $f(c)=c$. Then it is $G^{\text{PLC}}, G^{\text{PLC}^*}$ and G^{PLC^*}-continuous. But it is not GLC^*-continuous and LC-continuous.

Example 4.5: Let $X=\{a,b,c\}=Y, \tau=\{\Phi, X, \{a\}\}$ and $\sigma=\{\Phi, Y, \{a\}\}$. Define $f: (X, \tau) \to (Y, \sigma)$ by $f(a)=a, f(b)=b$ and $f(c)=c$ then it is $G^{\text{PLC}}, G^{\text{PLC}^*}$ and G^{PLC^*}-continuous. But it is not G^a LC, G^a LC and G^a LC* continuous.

Example 4.6: Let $X=\{a,b,c\}=Y, \tau=\{\Phi, X, \{a\}\}$ and $\sigma=\{\Phi, Y, \{a\}\}$. Define $f: (X, \tau) \to (Y, \sigma)$ by $f(a)=a, f(b)=b$ and $f(c)=c$ then it is $G^{\text{PLC}}, G^{\text{PLC}^*}$ and G^{PLC^*}-continuous. But it is not G^a LC, G^a LC and G^a LC* continuous.

Theorem 4.8: Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be any two functions. Then

(i) $g\circ f$ is G^p PLC-irresolute if f and g are G^p PLC-irresolute.

(ii) $g\circ f$ is G^p PLC*-irresolute if f and g are G^p PLC*-irresolute.

(iii) $g\circ f$ is G^p PLC***-irresolute if f and g are G^p PLC***-irresolute.

(iv) $g\circ f$ is G^p PLC**-continuous if f is G^p PLC-continuous and g is continuous.

(v) $g\circ f$ is G^p PLC***-continuous if f is G^p PLC*-continuous and g is continuous.

(vi) $g\circ f$ is G^p PLC**-continuous if f is G^p PLC**-continuous and g is continuous.

(vii) $g\circ f$ is G^p PLC*-continuous if f is G^p PLC*-continuous and g is G^p PLC-continuous.

(viii) $g\circ f$ is G^p PLC*-continuous if f is G^p PLC*-continuous and g is G^p PLC**-continuous.

(ix) $g\circ f$ is G^p PLC**-continuous if f is G^p PLC**-continuous and g is G^p PLC**-continuous.

Remark 4.7: The following diagram shows the relationships between g^p-locally closed sets and some other sets.

Where $A \implies B$ ($A \implies B$) represents A implies B (A does not imply B).

REFERENCES

