STRONG CONVERGENCE OF A MODIFIED MANN ITERATIVE SCHEME FOR FIXED POINT OF K-STRICLTY PSEUDO-CONTRACTIVE MAPPINGS IN HILBERT SPACES

Cyril Dennis Enyi, Olaniyi Samuel Iyiola, Mukiawa Edwing Soh

Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, KFUPM.

ABSTRACT
In this paper, we presented and proved a strong convergence result for a new modified Mann iterative algorithm for k-strictly pseudo-contractive mappings in Hilbert spaces. Our scheme is simple and computations are made easier. This result generalises existing results in this area.

1 INTRODUCTION
Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$. A map $T:H\rightarrow H$ is said to be nonexpansive if for all $x,z \in H$ we have
\[\|Tx-Tz\| \leq \|x-z\| \]
We denote the set of fixed points of T by $\text{Fix}(T)$.

Definition 1.1 A map $T:H\rightarrow H$ is said to be k-strictly pseudo-contractive if there exists a constant $0 \leq k < 1$ such that for all $x,z \in H$
\[\|Tx-Tz\|^2 \leq \|x-z\|^2 + k \| (I-T)x - (I-T)z \|^2 . \] (1)
In a real Hilbert space it follows that (1) is equivalent to
\[\langle Tx-Tz, x-z \rangle \leq \|x-z\|^2 - \frac{1-k}{2} \| (I-T)x - (I-T)z \|^2 . \] (2)
Observe that the class of k-strictly pseudo-contractive mappings includes as a sub class the class of nonexpansive mappings i.e., when $k=0$. The mapping T is as well said to be pseudo-contractive if $k=1$, and T is said to be strongly pseudo-contractive if there exists $k \in (0,1)$ such that $T-kI$ is pseudo-contractive.

Iterative methods for nonexpansive mappings have been extensively studied by many authors see [3, 7, 9,17], while that of strictly pseudo-contractive maps are far less developed because the second term appearing in the right hand side of (1) posses a lot of treat in computations. However, Browder and PETryshyn in their work in 1967 initiated the study of fixed point of strictly pseudo-contractive maps. Since strictly pseudo-contractive maps is one of the most important class of mappings in nonlinear mappings, and has more interesting and powerful applications in solving inverse problems see Scherzer [13], it is of high importance to develop iterative methods for strictly pseudo-contractive mappings. However recently many authors have devoted time in developing schemes for finding fixed points for strictly pseudo-contractive maps, see [1,10] and the references therein. In 1953, for an arbitrary initial element $x_1 \in E$, Mann [6] introduced the iterative scheme
\[x_{n+1} = \alpha_n x_n + (1-\alpha_n) T x_n, \quad \forall n \geq 1, \]
where $\{\alpha_n\}$ is a sequence in $[0,1]$. The Mann iteration has been extensively studied for nonexpansive mappings. The Mann iteration can only guarantee weak convergence in the case of infinite dimensional Hilbert Spaces (see [12, 4, 2]). However several modifications to the Mann iteration were made in recent times by many authors to obtain strong convergence results, see [11] and the references therein.

Browder and Petryshyn [3] in their work showed that for a k-strictly pseudo-contractive mapping T such that $\text{Fix}(T) \neq \emptyset$, the sequence $\{x_n\}$ iteratively generated by arbitrary initial point $x_1 \in E$
\[x_{n+1} = \alpha_n x_n + (1-\alpha_n) T x_n, \quad \forall n \geq 1, \]
where α is a constant satisfying $\lambda \leq \alpha < 1$, weakly converges to a fixed point of T. Recently many authors see [7] have extended Browder and Petryshyn’s result, nevertheless the convergence results they obtained are in general not strong. However, very recently, G. Marino et al [7,8], Mainge [5], G. L. Acedo [1] obtained strong convergence results for some new iterative schemes for k-strictly pseudo-contractive mappings.

In this paper, we consider a new modified Mann iterative scheme
\[x_{n+1} = (1-\alpha_n) x_n + \beta_n T x_n + \alpha_n u, \quad \forall n \geq 1, \] (3)
where \(x_1 \in H \) is an arbitrary initial element. Under certain mild conditions on the sequences \(\{\alpha_n\} \) and \(\{\beta_n\} \) we prove the strong convergence of the sequence \(\{x_n\} \) generated by (3) to a fixed point of a \(k \)-strictly pseudo-contractive mapping in Hilbert spaces. The result in this paper generalizes and improves so many well known results in the literature.

2 Preliminaries

We present, in this section, some useful lemmas that will be used to prove our main results.

Lemma 2.1 Let \(H \) be a real Hilbert space. Then the following inequality holds:

\[
\|x - y\|^2 = \|x\|^2 - 2\langle x, y \rangle + \|y\|^2,
\]

for all \(x, y \in H \).

Lemma 2.2 Let \(H \) be a real Hilbert space. Then the following inequality holds:

\[
\|x + y\|^2 \leq \|x\|^2 + 2\langle y, x + y \rangle,
\]

for all \(x, y \in H \).

Lemma 2.3 \((15, 14)\) Let \(\{\alpha_n\} \) be a sequence of non negative real numbers such that

\[
\alpha_{n+1} \leq (1-\sigma_n)\alpha_n + \sigma_n \eta_n + \delta_n, \quad n \geq 1
\]

where

(i) \(\{\alpha_n\} \subset [0,1], \quad \sum_{n=1}^{\infty} \alpha_n = \infty \)

(ii) \(\limsup_{n \to \infty} \eta_n \leq 0 \)

(iii) \(\delta_n \geq 0, \quad n \geq 1, \quad \sum_{n=0}^{\infty} \delta_n < \infty \)

Then,

\[
\lim_{n \to \infty} \alpha_n = 0.
\]

Lemma 2.4 (Demi-closed principle) \((7)\) Let \(C \) be a nonempty closed convex subset of a real Hilbert space \(H \). Let \(T: C \to C \) be a \(k \)-strictly pseudo-contractive mapping. Then \(I - T \) is demi-closed at \(0 \), i.e., if \(x_n \to x \in C \) and \(x_n - Tx_n \to 0 \), then \(x = Tx \).

Lemma 2.5 \((7)\) Let \(H \) be a real Hilbert space. If \(\{x_n\} \) is a sequence in \(H \) weakly convergent to \(z \), then

\[
\limsup_{n \to \infty} \|x_n - y\|^2 = \limsup_{n \to \infty} \|x_n - z\|^2 + \|z - y\|^2, \quad \forall y \in H.
\]

3 Main Results

Theorem 3.1 Let \(H \) be a real Hilbert space. Let \(T: H \to H \) be a \(k \)-strictly pseudo-contractive mapping such that \(\text{Fix}(T) \neq \emptyset \). Let \(\{\alpha_n\} \) and \(\{\beta_n\} \) be two real sequences with \(\alpha_n \in (0, 1) \) for all \(n \geq 1 \). Assume the following conditions are satisfied:

(C1) \(\lim_{n \to \infty} \alpha_n = 0; \)

(C2) \(\sum_{n=0}^{\infty} \alpha_n = \infty; \)

(C3) \(\beta_n = \frac{1}{1 - \alpha_n}. \)

Let \(x_1 \in H \) be an initial element, then for any \(u \in H \) the sequence \(\{x_n\} \) generated by (3) converges strongly to a fixed point of \(T \).

We show first that the sequence \(\{x_n\} \) is bounded.

Let \(p \in \text{Fix}(T) \). We have

\[
\|x_{n+1} - p\|^2 = \|(1 - \alpha_n - \beta_n)(x_n - p) + \beta_n(Tx_n - p) + \alpha_n(u - p)\|^2
\]

\[
\leq \|(1 - \alpha_n - \beta_n)(x_n - p) + \beta_n(Tx_n - p) + \alpha_n(u - p)\|^2
\]

\[
\leq (1 - \alpha_n - \beta_n)^2 \|x_n - p\|^2 + 2\beta_n(1 - \alpha_n - \beta_n) \|Tx_n - p, x_n - p\|^2
\]

\[
\leq (1 - \alpha_n - \beta_n)^2 \|x_n - p\|^2 + 2\beta_n(1 - \alpha_n - \beta_n) \|Tx_n - p\|^2 + 2\beta_n(1 - \alpha_n - \beta_n) \|x_n - p\|^2 - \frac{1 - \delta_n}{2} \|x_n - Tx_n\|^2
\]

\[
\leq (1 - \alpha_n)^2 \|x_n - p\|^2 + (1 - \delta_n) \|x_n - Tx_n\|^2 - (1 - \alpha_n)(1 - \beta_n) \|x_n - Tx_n\|^2
\]

\[
= (1 - \alpha_n)^2 \|x_n - p\|^2 + (1 - \delta_n) \|x_n - Tx_n\|^2
\]

\[
\leq (1 - \alpha_n)^2 \|x_n - p\|^2.
\]
Hence
\[\|\left(1 - \alpha_n - \beta_n\right)(x_n - p) + \beta_n(Tx_n - p)\| \leq (1 - \alpha_n)\|x_n - p\| \tag{9}\]
Using (8) and (9), we have that
\[
\|x_{n+1} - p\| < (1 - \alpha_n)\|x_n - p\| + \alpha_n\|u - p\|
\]
\[\leq \max\{\|x_n - p\|, \|u - p\|\}
\]
By induction, we obtain that
\[\|x_n - p\| \leq \max\{\|x_1 - p\|, \|u - p\|\}
\]
Therefore the sequence \(\{x_n\}\) is bounded.

We have that
\[
\|T^k x - p\|^2 \leq \|x - p\|^2 + \lambda\|x - Tx\|^2
\]
\[
\Rightarrow (Tx - p, Tx - p) \leq (x - p, x - Tx) + (x - p, Tx - p) + \lambda\|x - Tx\|^2
\]
\[
\Rightarrow (Tx - x, Tx - x) \leq (x - p, x - Tx) + \lambda\|x - Tx\|^2
\]
It follows that
\[\left(1 - \lambda\right)\|Tx - x\|^2 \leq 2\|x - p, x - Tx\|. \tag{10}\]
By (3), (10) and lemma (2.2), we obtain that
\[
\|x_{n+1} - p\|^2 = \|(1 - \alpha_n - \beta_n)x_n + \beta_n(Tx_n + \alpha_n u - p)\|^2
\]
\[
\leq \|x_n - p\|^2 - \beta_n\|x_n - Tx_n\|^2 - 2\alpha_n\langle x_n - u, x_{n+1} - p\rangle
\]
\[
\leq \|x_n - p\|^2 - 2\beta_n\|x_n - Tx_n, x_n - p\|^2 + \beta_n\|x_n - Tx_n\|^2 - 2\alpha_n\langle x_n - u, x_{n+1} - p\rangle
\]
\[
\leq \|x_n - p\|^2 - \beta_n(1 - \lambda)\|x_n - Tx_n\|^2 - 2\alpha_n\langle x_n - u, x_{n+1} - p\rangle
\]
Since \(\{x_n\}\) is bounded, there exist a constant \(K \geq 0\) such that
\[-2\alpha_n\langle x_n - u, x_{n+1} - p\rangle \leq K \text{ for all } n \geq 1.
\]
By (11) we have
\[
\|x_{n+1} - p\|^2 - \|x_n - p\|^2 \leq K\alpha_n
\]
We shall now show that \(\{x_n\}\) converges strongly to \(p\). To do this, we consider the following two cases:

Case 1. Assume that the sequence \(\|x_n - p\|\) is monotone decreasing. It follows that \(\|x_n - p\|\) converges. Immediately we obtain that
\[\|x_{n+1} - p\|^2 - \|x_n - p\|^2 \to 0, \tag{13}\]
(12), (13) and condition (C1) give that
\[\|x_n - Tx_n\| \to 0. \tag{14}\]
Define \(\omega(x) = \{x : 3x \to x\}\) i.e., the weak \(\omega\)-limit set of \(\{x_n\}\). By lemma (2.4) and (14), we obtain that \(\omega(x) \subset \text{Fix}(T)\). Hence the sequence \(\{x_n\}\) converges weakly to a fixed point \(x^*\) of \(T\).

Let \(x^*, y^* \in \omega(x)\) and \(\{x_{m_j}\}, \{x_{n_j}\}\) be subsequences of \(\{x_n\}\) such that \(x_{m_j} \to x^*\) and \(x_{n_j} \to y^*\).

We know that for any \(q \in \text{Fix}(T), \lim_{n \to \infty}\|x_n - q\|\) exists.

Therefore, by lemma (2.5), we have that
\[
\lim_{n \to \infty}\|x_n - x^*\|^2 = \lim_{j \to \infty}\|x_{m_j} - x^*\|^2
\]
\[
= \lim_{j \to \infty}\|x_{m_j} - y^*\|^2 + \|y^* - x^*\|^2
\]
\[
= \lim_{j \to \infty}\|x_{n_j} - y^*\|^2 + \|y^* - x^*\|^2
\]
\[
= \lim_{j \to \infty}\|x_{n_j} - x^*\|^2 + 2\|y^* - x^*\|^2
\]
Strong convergence of a modified Mann iterative scheme for fixed point of \(k \)-strictly pseudocontractive mappings in Hilbert spaces.

\[
= \lim_{n \to \infty} \| x_n - x^* \|^2 + 2 \| y^* - x^* \|^2.
\]

Hence, \(x = y^* \). Now we show that \(\{x_n\} \) converges strongly to \(x \).

We set \(z = (1 - \beta_n) x_n + \beta_n Tx_n, \forall n \geq 1 \). Therefore (3) becomes

\[
x_{n+1} = z_n - \alpha_n (x_n - u), \forall n \geq 1. \tag{15}
\]

Hence

\[
x_{n+1} = (1 - \alpha_n) z_n - \alpha_n (x_n - z_n - u)
= (1 - \alpha_n) z_n - \alpha_n [\beta_n (x_n - T x_n) - u] \tag{16}
\]

Observe that

\[
\| z_n - x^* \|^2 = \| x_n - x^* - \beta_n (x_n - T x_n) \|^2
= \| x_n - x^* \|^2 - 2 \beta_n \langle x_n - T x_n, x_n - x^* \rangle + \beta_n^2 \| x_n - T x_n \|^2
\]

\[
\leq \| x_n - x^* \|^2 - \beta_n \| (1 - \lambda) - \beta_n \| x_n - T x_n \|^2
\]

\[
\leq \| x_n - x^* \|^2.
\]

Applying lemma 2.2 to (16), we have

\[
\| x_{n+1} - x^* \|^2 = \| (1 - \alpha_n) z_n - \alpha_n [\beta_n (x_n - T x_n) - u] - x^* \|^2
\]

\[
\leq (1 - \alpha_n)^2 \| z_n - x^* \|^2 - 2 \alpha_n \beta_n \langle x_n - T x_n, x_{n+1} - x^* \rangle
- 2 \alpha_n \langle x^* - u, x_{n+1} - x^* \rangle
\]

\[
\leq (1 - \alpha_n) \| x_n - x^* \|^2 - 2 \alpha_n \beta_n \langle x_n - T x_n, x_{n+1} - x^* \rangle
- 2 \alpha_n \langle x^* - u, x_{n+1} - x^* \rangle. \tag{17}
\]

It is clear that

\[
\limsup_{n \to \infty} 2 \beta_n \langle x_n - T x_n, x_{n+1} - x^* \rangle - 2 \langle x^* - u, x_{n+1} \rangle \leq 0.
\]

Therefore by lemma 2.3 and (17), we obtain that \(x_n \to x^* \).

Case 2. Assume that the sequence \(\| x_n - p \| \) is not monotonically decreasing.

We set \(\Gamma_n = \| x_n - p \|^2 \) and let \(\tau : \mathbb{N} \to \mathbb{N} \) be a mapping defined for all \(n \geq n_0 \) (for some \(n_0 \) large enough) by

\[
\tau(n) = \max \{ k \in \mathbb{N} : k \leq n, \Gamma_k \leq \Gamma_{k+1} \}.
\]

It is easy to see that \(\tau \) is a nondecreasing sequence satisfying \(\tau(n) \to \infty \) as \(n \to \infty \), furthermore \(\Gamma_\tau(n) \leq \Gamma_\tau(n) + 1 \) for all \(n \geq n_0 \).

By (12) we obtain that

\[
\| x_{\tau(n)} - T x_{\tau(n)} \|^2 \leq \frac{\Gamma_{\tau(n)} - \Gamma_{\tau(n) + 1} + K \alpha_{\tau(n)}}{\beta_{\tau(n)} [(1 - \lambda) - \beta_{\tau(n)}]} \to 0,
\]

thus

\[
\| x_{\tau(n)} - T x_{\tau(n)} \| \to 0.
\]

Using similar argument as in **case 1**, we immediately get that \(x_{\tau(n)} \) converges weakly to \(x^* \) as \(\tau(n) \to \infty \).

Observe that for all \(n \geq n_0 \),

\[
0 \leq \| x_{\tau(n)} - x^* \|^2 - \| x_{\tau(n)} - x^* \|^2
\]

\[
\leq \alpha_{\tau(n)} \left[2 \beta_{\tau(n)} \| x_{\tau(n)} - T x_{\tau(n)}, x^* - x_{\tau(n+1)} \| + 2 \| u - x^*, x_{\tau(n+1)} - x^* \| - \| x_{\tau(n)} - x^* \|^2 \right].
\]

which implies that

\[
\| x_{\tau(n)} - x^* \|^2 \leq 2 \beta_{\tau(n)} \| x_{\tau(n)} - T x_{\tau(n)}, x^* - x_{\tau(n+1)} \| + 2 \| u - x^*, x_{\tau(n+1)} - x^* \|.
\]

Hence it follows that

\[
\lim_{n \to \infty} \| x_{\tau(n)} - x^* \|^2 = 0.
\]

Hence
Enyi et al/ Strong convergence of a modified Mann iterative scheme for fixed point of k-strictly pseudo-contractive mappings in Hilbert spaces.

\[\lim_{n \to \infty} \tau(n) = \lim_{n \to \infty} \tau(n+1) = 0. \]

Furthermore, observe that for all \(n \geq n_0 \) if \(n \neq \tau(n) \) (i.e., \(\tau(n) < n \)) we have that

\[\tau_n \leq \tau(n+1), \quad \text{since} \quad \tau_j < \tau(n+1) < j < n. \]

Therefore for all \(n \geq n_0 \)

\[0 \leq \tau_n \leq \max \{ \tau_{n+1}, \tau_{n+2}, \ldots, \tau_n \} \leq \tau(n) \rightarrow 0. \]

Hence \(\lim_{n \to \infty} \tau_n = 0 \), i.e., the sequence \(\{ \tau_n \} \) converges strongly to \(x^* \). The proof is complete.

Using Theorem 3.1, we obtain the following corollary:

Corollary 2 Let \(H \) be a real Hilbert space. Let \(T : H \to H \) be a nonexpansive mapping such that \(\text{Fix}(T) \neq \emptyset \). Let \(\{ \alpha_n \} \) and \(\{ \beta_n \} \) be two real sequences with \(\alpha_n \in (0,1) \) for all \(n \geq 1 \). Assume the following conditions are satisfied:

\begin{align*}
(C1) & \quad \lim_{n \to \infty} \alpha_n = 0; \\
(C2) & \quad \sum_{n=0}^{\infty} \alpha_n = \infty; \\
(C3) & \quad \beta_n = \frac{1}{1- \alpha_n}.
\end{align*}

Let \(x_0 \in H \) be an initial element, then for any \(u \in H \) the sequence \(\{ x_n \} \) generated by (3) converges strongly to a fixed point of \(T \).

REFERENCES

