Contra $rpsI$-Continuous Functions in Ideal Topological Spaces

B. SAKTHI @ SATHYA

Department of Mathematics
G. Venkataswamy Naidu College
Kovilpatti.
agansathyaa@gmail.com

S. MURUGESAN

Department of Mathematics
S. Ramasamy Naidu Memorial College
Sattur
satturmurugesh@gmail.com

Abstract

In this paper, we apply the notion of $rpsI$-open sets to present and study a new class of functions called contra $rpsI$-Continuous functions in ideal topological spaces. Relationships between this new class and other classes of functions are investigated and some characterisations of this new class of functions are studied.

Mathematics Subject Classification: 54D1, 54D30, 54A05.

Keywords: $rpsI$-connected, Contra $rpsI$-continuous, Contra αI continuous, Contra semi I-continuous.

1 Introduction

In 1996, Dontchev [2], introduced a new class of functions called Contra - Continuous functions. He defined a function $f : X \to Y$ to be Contra continuous if the preimage of every open set of Y is closed in X. A new weaker form of this class of functions called Contra - rps -continuous functions, is introduced and investigated by Shyla Isac Mary and Thangavelu [10]. We also obtain some properties of such functions. The subject of ideals in topological spaces has been studied by Kuratowski [6] and Vaidyanathaswamy [12].
Noiri, Jafari[7] introduced and investigated Contra pre-I-Continuous functions. Also Vadivel and Chandrasekar, Saraswathi[11] introduced Contra αI-Continuous functions. In this direction, we will introduce the concept of contra $rps I$-functions via the notion of $rsp I$-closed sets.

2 Preliminaries

Definition 2.1. [8] A subset A of an ideal topological space (X, τ, I) is called regular pre-semi I closed (briefly $rps I$-closed) if $\text{spcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $rg I$-open.

Definition 2.2. [8] A subset A of an ideal topological space (X, τ, I) is called regular generalized I closed (briefly $rg I$-closed) if $\text{cl}^*(A) \subseteq U$ whenever $A \subseteq U$ and U is regular I-open. The complement of $rg I$-closed set is $rg I$-open.

Definition 2.3. A subset A of an ideal topological space (X, τ, I) is called
(i) regular I-open [5] if $A = \text{int}(\text{cl}^*(A))$.
(ii) pre I-open [2] if $A \subseteq \text{int}(\text{cl}^*(A))$.
(iii) semi I-open [3] if $A \subseteq \text{cl}(\text{int}(A))$.
(iv) αI-open [3] if $A \subseteq \text{int}(\text{cl}^*(\text{int}(A)))$.

Definition 2.4. [10] A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called Contra $rps I$-continuous if $f^{-1}(V)$ is $rps I$-closed in (X, τ, I) for each open set V in (Y, σ).

Definition 2.5. A function $f : (X, \tau, I) \rightarrow (Y, \sigma)$ is called
(i) Contra pre I-continuous [7] if $f^{-1}(V)$ is pre-I-open in (X, τ, I), for every closed set V of (Y, σ).
(ii) Contra αI-continuous [11] if $f^{-1}(V)$ is αI-open in (X, τ, I) for every closed set V of (Y, σ).
(iii) Contra semi I-continuous [4] if $f^{-1}(V)$ is semi-I-open in (X, τ, I) for every closed set V of (Y, σ).
(iv) Contra continuous [1] if $f^{-1}(V)$ is closed in (X, τ) for every open set V in (Y, σ).
(v) $rps I$-continuous [9] if $f^{-1}(V)$ is $rps I$-open in (X, τ) for every open set V in (Y, σ).
Lemma 2.6. [8]
(i) Every semi-I-closed set is rpsI-closed
(ii) Every pre-I-closed set is rpsI-closed
(iii) Every αI-closed set is rpsI-closed.
(iv) Every closed set is rpsI-closed.

Definition 2.7. A function $f : (X, \tau, I) \to (Y, \sigma)$ is called rpsI-irresolute [9] if $f^{-1}(A)$ is rpsI-closed in X, for every rpsI-closed subset A of Y.

Definition 2.8. A space X is locally indiscrete [10] if every open subset of X is closed.

3 Contra rpsI-Continuous Functions

In this section, we introduce contra rpsI-continuous functions.

Definition 3.1. A function $f : (X, \tau, I) \to (Y, \sigma)$ is called contra rpsI-continuous if $f^{-1}(V)$ is rpsI-closed in (X, τ, I) for each open set V in (Y, σ).

Theorem 3.2. Every contra semi I-continuous function is contra rpsI-continuous.

Proof. Suppose $f : (X, \tau, I) \to (Y, \sigma)$ is contra semi-I-continuous function. Let V be an open set in Y. Since f is contra semi-I-continuous, we have $f^{-1}(V)$ is semi-I-closed in X. Again using lemma 2.6, $f^{-1}(V)$ is rpsI-closed in X. Therefore by using definition 3.1, f is contra rpsI-continuous.

The converse of the above theorem need not be true as seen from the following example.

Example 3.3. Consider $X = Y = \{a, b, c, d\}$, $\tau = \{\phi, Y, \{a\}, \{b, d\}, \{a, b, d\}\}$, $\sigma = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$, $I = \{\phi, \{a\}\}$ and $f(a) = a$, $f(b) = b$, $f(c) = c$, $f(d) = a$. Then f is contra rpsI-continuous but not contra semi I-continuous because the set $f^{-1}(b) = \{b\}$ which is rpsI-closed but not semi-I closed in X.

Theorem 3.4. Every contra αI-continuous function is contra rpsI-continuous.

Proof. Suppose $f : (X, \tau, I) \to (Y, \sigma)$ is contra $\alpha - I$-continuous function. Let V be an open set in Y. Then V^c is closed in Y. Since f is contra $\alpha - I$ continuous function, using Definition 2.5, $f^{-1}(V^c)$ is αI-open in X. But $f^{-1}(V^c) = [f^{-1}(V)]^c$ which is αI open in X. Therefore $f^{-1}(V)$ is αI-closed in X. Again using Lemma 2.6, $f^{-1}(V)$ is rpsI-closed in X. Then by using Definition 3.1, f is contra rpsI-continuous.
The converse of the above theorem need not be true as seen from the following example.

Example 3.5. Consider \(X = Y = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}, \sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}, \mathcal{I} = \{\phi, \{a\}\} \) and \(f(a) = a, f(b) = b, f(c) = c, f(d) = d. \) Then \(f \) is contra rpsI-continuous but not contra \(\alpha - I \) continuous because the set \(f^{-1}(a) = \{a\} \) which is rpsI-closed but not \(\alpha I \)-closed.

Theorem 3.6. Every contra pre-I-continuous function is contra rpsI-continuous.

Proof. Suppose \(f : (X, \tau, \mathcal{I}) \to (Y, \sigma) \) is contra pre-I continuous function. Let \(V \) be an open set in \(Y. \) Then \(V^c \) is closed in \(Y. \) Since \(f \) is contra pre-I-continuous function, using Definition 2.5(i), \(f^{-1}(V^c) \) is pre-I-open in \(X. \) But \(f^{-1}(V^c) = [f^{-1}(V)]^c \) which is pre-I-open in \(X. \) Therefore \(f^{-1}(V) \) is pre-I-closed in \(X. \) Again using Lemma 2.6, \(f^{-1}(V) \) is rpsI-closed in \(X. \) Then by using Definition 3.1, \(f \) is contra rpsI-continuous.

But the converse of the above theorem need not be true as seen from the following example.

Example 3.7. Consider \(X = Y = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}, \sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}, \mathcal{I} = \{\phi, \{a\}\}, f(a) = d, f(b) = a, f(c) = c, f(d) = a. \) Then \(f \) is contra rpsI-continuous but not contra pre-I-continuous because the set \(f^{-1}(a) = \{b, d\} \) is rpsI-closed but not pre-I closed.

Theorem 3.8. Every contra continuous function is contra rpsI-continuous.

The proof follows from Lemma 2.6 and Definition 2.5.

The following example show that the concepts of rpsI-continuity and contra rpsI-continuity are independent of each other.

Example 3.9. Let \(X = Y = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, c\}\}, \sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}, \mathcal{I} = \{\phi, \{a\}\} \) and \(\mathcal{I} = \{\phi, \{a\}\}. \) Let \(f : (X, \tau, \mathcal{I}) \to (Y, \sigma) \) be defined by \(f(a) = b, f(b) = a, f(c) = d \) and \(f(d) = c. \) Observe that \(f \) is rpsI-continuous. But \(f \) is not contra rpsI-continuous, since \(\{a\} \) is open and \(f^{-1}(\{a\}) = \{b\} \) is not rpsI-closed.

Example 3.10. Let \(X = Y = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, c\}\}, \sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}, \mathcal{I} = \{\phi, \{a\}\} \) and \(\mathcal{I} = \{\phi, \{a\}\}. \) Let \(f : (X, \tau, \mathcal{I}) \to (Y, \sigma) \) be defined by \(f(a) = d, f(b) = c, f(c) = b \) and \(f(d) = a. \) Observe that \(f \) is contra rpsI-continuous. But \(f \) is not rpsI-continuous, since \(\{a\} \) is open and \(f^{-1}(\{a\}) = \{d\} \) is not rpsI-open.

Definition 3.11. An ideal space \((X, \tau, \mathcal{I})\) is called rpsI-locally indiscrete if every rpsI-open subset of \(X \) is closed.
Theorem 3.12. Let \(f : (X, \tau, \mathcal{I}) \to (Y, \sigma) \) be a function.

(i) If \(f \) is \(rpsI \)-continuous and if \(X \) is \(rpsI \)-locally indiscrete, then \(f \) is contra continuous.

(ii) If \(f \) is \(rpsI \)-continuous and if \(Y \) is locally indiscrete, then \(f \) is contra \(rpsI \)-continuous.

Proof. (i) Suppose \(f \) is \(rpsI \)-continuous. Let \(X \) be \(rpsI \)-locally indiscrete and \(V \) be open in \(Y \). Since \(f \) is \(rpsI \)-continuous by using Definition 2.5(v), \(f^{-1}(V) \) is \(rpsI \)-open in \(X \). Since \(X \) is \(rpsI \)-locally indiscrete using Definition 3.11, \(f^{-1}(V) \) is closed in \(X \). Therefore by using Definition 2.5(iv), \(f \) is contra continuous. This proves (i).

(ii) Suppose \(f \) is \(rpsI \)-continuous. Let \(Y \) be locally indiscrete and \(V \) be open subset of \(Y \). Since \(Y \) is locally indiscrete by using Definition 2.8, \(V \) is closed. Since \(f \) is \(rpsI \)-continuous by using Definition 2.5(v), \(f^{-1}(V) \) is \(rpsI \)-closed in \(X \). Therefore by using Definition 3.1, \(f \) is contra \(rpsI \)-continuous. This proves (ii). \(\square \)

Theorem 3.13. For a function \(f : (X, \tau, \mathcal{I}) \to (Y, \sigma) \) the following are equivalent.

(i) \(f \) is contra \(rpsI \)-continuous.

(ii) For every closed subset \(F \) of \(Y \), \(f^{-1}(F) \) is \(rpsI \)-open in \(X \).

Proof. (i) \(\implies \) (ii) Given \(f \) is contra \(rpsI \)-continuous. We have for every open set \(V \) in \(Y \), \(f^{-1}(V) \) is \(rpsI \)-closed in \(X \). Let \(F \) be a closed subset of \(Y \). Then \(F^c \) is open subset of \(Y \), \(f^{-1}(F^c) \) is \(rpsI \)-closed in \(X \). But \(f^{-1}(F^c) = (f^{-1}(F))^c \) which is \(rpsI \)-closed in \(X \). Thus \(f^{-1}(F) \) is \(rpsI \)-open in \(X \).

(ii) \(\implies \) (i) Let \(V \) be an open set in \(Y \). Then \(V^c \) is closed in \(Y \) which implies \(f^{-1}(V^c) \) is \(rpsI \)-open in \(X \). But \(f^{-1}(V^c) = (f^{-1}(V))^c \) which is \(rpsI \)-open in \(X \). Thus \(f^{-1}(V) \) is \(rpsI \)-closed in \(X \) and hence \(f \) is contra \(rpsI \)-continuous. \(\square \)

Theorem 3.14. Contra \(rpsI \)-continuous image of a \(rpsI \)-connected space is connected.

Proof. Let \(f \) be a contra \(rpsI \)-continuous function from a \(rpsI \)-connected space \(X \) onto a space \(Y \). Assume that \(Y \) is disconnected. Then \(Y = A \cup B \), where \(A \) and \(B \) are disjoint non-empty open sets in \(Y \) with \(A \cap B = \phi \). Since \(f \) is contra \(rpsI \)-continuous, we have \(f^{-1}(A) \) and \(f^{-1}(B) \) are \(rpsI \)-closed sets in \(X \) with \(f^{-1}(A) \cup f^{-1}(B) = f^{-1}(A \cup B) = f^{-1}(Y) = X \) and \(f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B) = f^{-1}(\phi) = \phi \). This means that \(X \) is not \(rpsI \)-connected which is a contradiction. Then \(Y \) is connected. \(\square \)

From Theorem 3.22 and Theorem 3.10, we have the following diagram.
4 Contra \(rpsI \)-irresolute functions

In this section, we introduce contra \(rpsI \)-irresolute functions.

Definition 4.1. A function \(f : (X, \tau, I) \to (Y, \sigma) \) is called Contra \(rpsI \)-irresolute if \(f^{-1}(V) \) is \(rpsI \)-closed in \(X \), for every \(rpsI \)-open set \(V \) of \(Y \).

Remark 4.2. Contra \(rpsI \)-irresolute and \(rpsI \)-irresolute functions are independent of each other.

Example 4.3. Consider the ideal topological space \((X, \tau, I) \), where \(X = Y = \{a, b, c, d\} \), \(\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\} \) and \(\sigma = \{\emptyset, Y, \{a\}, \{b, d\}, \{a, b, d\}\} \). Let \(f : (X, \tau, I) \to (Y, \sigma) \) be defined by \(f(a) = d, f(b) = c, f(c) = b, f(d) = a \). Then \(f \) is Contra \(rpsI \)-irresolute but not \(rpsI \)-irresolute because the set \(\{c\} \) is \(rpsI \)-closed in \(Y \), but \(f^{-1}(c) = \{b\} \) is not \(rpsI \)-closed in \(X \).

Example 4.4. Consider the ideal topological space \((X, \tau, I) \), where \(X = Y = \{a, b, c\} \), \(\tau = \{\emptyset, X, \{a\}, \{a, b\}\} \), \(I = \{\emptyset, \{b\}\} \), \(\sigma = \{\emptyset, Y, \{b\}, \{a, b\}\} \) and \(\mathcal{J} = \{\emptyset, \{a\}\} \). A function \(f : (X, \tau, I) \to (Y, \sigma, \mathcal{J}) \) defined by \(f(a) = b, f(b) = a, f(c) = c \). Then \(f \) is \(rpsI \)-irresolute but not contra \(rpsI \)-irresolute because the set \(\{b\} \) is \(rpsI \)-open in \(Y \) but \(f^{-1}(b) = \{a\} \) which is not \(rpsI \)-closed in \(X \).

Theorem 4.5. Let \(f : (X, \tau, I) \to (Y, \sigma) \) and \(g : (Y, \sigma, \mathcal{J}) \to (Z, \mu) \). Then

(i) \(g \circ f \) is Contra \(rpsI \)-irresolute if \(g \) is \(rpsI \)-irresolute and \(f \) is contra \(rpsI \)-irresolute.

(ii) \(g \circ f \) is contra \(rpsI \)-irresolute if \(g \) is contra \(rpsI \)-irresolute and \(f \) is \(rpsI \)-irresolute.

Proof. (i) Let \(V \) be a \(rpsI \)-open subset of \(Z \). Then \(V^c \) is \(rpsI \)-closed subset of \(Z \). Since \(g \) is \(rpsI \)-irresolute, we have \(g^{-1}(V^c) \) is \(rpsI \)-closed set in \(Y \). Also,
A function \(f : (X, \tau, I) \to (Y, \sigma) \) is said to be rpsI-homeomorphism iff (i) \(f \) is bijective (ii) \(f \) is rpsI-continuous (iii) \(f^{-1} \) is rpsI-continuous.

Theorem 4.7. Let \((X, \tau, I)\) and \((Y, \sigma, J)\) be an ideal topological spaces and let \(f \) be a bijective mapping of \(X \) onto \(Y \). Then the following statements are equivalent.

(a) \(f \) is a rpsI-homeomorphism

(b) \(f \) is rpsI-continuous and rpsI-open

(c) \(f \) is rpsI-continuous and rpsI-closed.

Proof. (a) \(\implies \) (b) Assume (a). Let \(g \) be the inverse mapping of \(f \) so that \(f^{-1} = g \) and \(g^{-1} = f \). Since \(f \) is bijection, \(g \) is also bijection. Let \(G \) be a open set in \(X \). Since \(f \) is a homeomorphism, \(g^{-1}(G) \) is rpsI-open in \(Y \). But \(g^{-1} = f \) so that \(g^{-1}(G) = f(G) \) which is rpsI-open in \(Y \). It follows that \(f \) is a rpsI open mapping. Clearly \(f \) is rpsI-continuous. Hence (a) \(\implies \) (b).

(b) \(\implies \) (a) Assume \(f \) is a bijection and rpsI-continuous, rpsI-open. Enough to prove that \(f^{-1} \) is rpsI-continuous. Let \(G \) be open in \(X \). Then by hypothesis, \(f(G) \) is rpsI-open in \(Y \). Therefore \(g^{-1}(G) \) is rpsI-open in \(Y \) and so \(g = f^{-1} \) is rpsI-continuous. Hence (b) \(\implies \) (a).

(a) \(\implies \) (c) Assume (a). Let \(H \) be closed set in \(X \). Then \(H^c \) is open in \(X \). Since \(g = f^{-1} \) is rpsI-continuous, it follows that \(g^{-1}(H^c) \) is rpsI-open in \(Y \). But \(g^{-1}(H^c) = g^{-1}(X - H) = g^{-1}(X) - g^{-1}(H) = Y - g^{-1}(H) \). Hence \(Y - g^{-1}(H) \) is rpsI-open in \(Y \). That is, \(g^{-1}(H) \) is rpsI-closed in \(Y \) which implies \(f(H) \) is rpsI-closed in \(Y \). Hence \(f \) is rpsI-closed map. This proves (a) \(\implies \) (c).

(c) \(\implies \) (a) Assume (c). Let \(G \) be any open set in \(X \). Then \(G^c \) is closed in \(X \). Since \(f \) is a rpsI-closed map, \(f(G^c) = g^{-1}(X - G) = g^{-1}(X) - g^{-1}(G) = Y - g^{-1}(G) \) is rpsI-closed in \(Y \). That is, \(g^{-1}(G) \) is rpsI-open in \(Y \). Thus inverse image of every open set in \(X \) is rpsI-open in \(Y \). Hence \(g = f^{-1} \) is rpsI-continuous and so \(f \) is a homeomorphism.

Theorem 4.8. Let \((X, \tau, I)\), \((Y, \sigma, J)\) and \((Z, \rho, K)\) be three ideal topological spaces. If \(f : (X, \tau, I) \to (Y, \sigma, J) \) and \(g : (Y, \sigma, J) \to (Z, \rho, K) \) are rpsI-homeomorphisms, then \(g \circ f : (X, \tau, I) \to (Z, \rho, K) \) is also a rpsI-homeomorphism.
Proof. (i) \(f \) is 1-1, onto and \(g \) is 1-1, onto which implies \(g \circ f \) is 1-1, onto.
(ii) \(f \) is \(rpsI \)-continuous and \(g \) is \(rpsI \)-continuous which implies \(g \circ f \) is \(rpsI \)-continuous.
(iii) \(g^{-1} \) is \(rpsI \)-continuous and \(f^{-1} \) is \(rpsI \)-continuous implies \(f^{-1} \circ g^{-1} \) is \(rpsI \)-continuous and so \((g \circ f)^{-1}\) is \(rpsI \)-continuous.
From (i), (ii) and (iii), \(g \circ f \) is a \(rpsI \)-homeomorphism.

Definition 4.9. A function \(f : (X, \tau, I) \rightarrow (Y, \sigma) \) is called totally \(rpsI \)-continuous if \(f^{-1}(V) \) is \(rpsI \)-clopen in \(X \), for every open set \(V \) in \(Y \).

Theorem 4.10. (i) Every totally \(rpsI \)-continuous function is \(rpsI \)-continuous.
(ii) Every totally \(rpsI \)-continuous function is contra \(rpsI \)-continuous.

The converse of the above statements need not be true as seen from the following example.

Example 4.11. Consider the ideal topological space in example 4.4. Define a function \(f : (X, \tau, I) \rightarrow (Y, \sigma, J) \) by \(f(a) = b, f(b) = a, f(c) = c \). Then \(f \) is \(rpsI \)-continuous but not totally \(rpsI \)-continuous because the set \(\{b\} \) is open in \(Y \) but \(f^{-1}(b) = \{a\} \) which is \(rpsI \)-open and not \(rpsI \)-closed in \(X \).

Example 4.12. Consider the ideal topological space in example 4.4. Define a function \(f : (X, \tau, I) \rightarrow (Y, \sigma, J) \) by \(f(a) = a, f(b) = c, f(c) = b \). Then \(f \) is contra \(rpsI \)-continuous but not totally \(rpsI \)-continuous because the set \(\{b\} \) is open in \(Y \) \(f^{-1}(b) = \{c\} \) which is \(rpsI \)-closed and not \(rpsI \)-open in \(X \).

Remark 4.13. \(rpsI \)-continuous and contra \(rpsI \)-continuous functions are independent of each other. This can be observed from the following example.

Example 4.14. Consider the ideal topological space in example 4.4. Define a function \(f : (X, \tau, I) \rightarrow (Y, \sigma, J) \) by \(f(a) = b, f(b) = c, f(c) = a \). Then \(f \) is \(rpsI \)-continuous but not contra \(rpsI \)-continuous because the set \(\{b\} \) is open in \(Y \) but \(f^{-1}(b) = \{a\} \) which is \(rpsI \)-open and not \(rpsI \)-closed in \(X \).

Example 4.15. Consider the ideal topological space in example 4.4. Define a function \(f : (X, \tau, I) \rightarrow (Y, \sigma, J) \) by \(f(a) = a, f(b) = b, f(c) = c \). Then \(f \) is contra \(rpsI \)-continuous but not \(rpsI \)-continuous because the set \(\{b\} \) is open in \(Y \) but \(f^{-1}(b) = \{b\} \) which is \(rpsI \)-closed and not \(rpsI \)-open in \(X \).

From theorem 4.10 to remark 4.13, we have the following diagram.

\[
\begin{array}{c}
\text{Totally} \ rpsI \text{-continuous} \\
\downarrow \ \ \downarrow \\
\text{rpsI-continuous} \ \\ \\
\leftarrow \rightleftharpoons \\
\text{Contra} \ rpsI \text{-continuous}
\end{array}
\]
Contra rpsI-Continuous Functions in Ideal Topological Spaces

References

