ON A CONTINUED FRACTION IDENTITY FROM RAMANUJAN’S NOTEBOOK

S.N. Fathima, Yudhisthira Jamudulia

Department of Mathematics Ramanujan School of Mathematical Sciences Pondicherry University, Puducherry-605014, INDIA

ARTICLE INFO

Corresponding Author
Yudhisthira Jamudulia,
Department of Mathematics
Ramanujan School of Mathematical Sciences Pondicherry University, Puducherry-605014, INDIA

ABSTRACT

In this paper, we study a continued fraction of Ramanujan A (q). We establish an integral representation of A (q) and prove its modular identities. We also compute explicit evaluation of this continued fraction. 2000 Mathematics Subject Classification: 11A55.

Key Words: Continued Fractions, Modular Equations.

©2014, AJCEM, All Right Reserved.

Introduction

Ramanujan recorded about 200 results on continued fractions in his notebooks [11] and lost notebook [12] without proof. The only result on continued fraction that he published [9], [10, pp.214-215], is related to the now celebrated Roger Ramanujan continued fraction defined by

\[R(q) = \frac{1}{1 + \frac{q}{1 + \frac{q^2}{1 + \frac{q^3}{1 + \ldots}}}}, \quad |q| < 1, \]

\[S(q) = R(-q), \]

which was first introduced by L.J. Roger [13] and independently rediscovered by Ramanujan. In his first two letters to G.H.Hardy [10, pp. xxvii-xxviii] [8, pp.21-30,53-62], Ramanujan communicated several results concerning R (q). In particularly, he asserted that

\[R(e^{-2\pi q}) = \frac{\sqrt{5+\sqrt{5}}}{2} \frac{\sqrt{5}+1}{2}, \]

\[S(e^{-\pi q}) = \frac{\sqrt{5-\sqrt{5}}}{2} \frac{\sqrt{5}-1}{2}. \]

which were first proved by G.N. Watson [15]. In his lost notebook [12, pp.26], Ramanujan claims that

\[R(q) = \frac{\sqrt{5}-1}{2} \exp\left(\frac{-1/5}{\int_q^1 (1-t^5)(1-t^{10})^{-t}dt}\right). \] (1.1)

(391)
\[
\frac{\sqrt{5} - 1}{2} - \frac{\sqrt{5}}{1 + 2\sqrt{5}} \exp \left(\frac{1}{5} \int_{q}^{1} \frac{(1-t)^5(1-t^2)^5 \ldots \text{dt}}{(1-t^5)(1-t^{10})} \right), \quad (1.2)
\]

where 0 < q < 1. The equality (1.1) was first proved by G.E. Andrews [3] and equality (1.2) was proved by S.H. Son [14]. On page 365 of his lost notebook [12], Ramanujan recorded five modular equations relating \(R(q) \) with \(R(-q) \), \(R(q^2) \), \(R(q^3) \), \(R(q^4) \) and \(R(q^5) \).

Motivated by these works in this paper we study the Ramanujan continued fraction

\[
R(q) = \frac{1}{1 - q^2 + \frac{q^2(1+q^2)^2}{1 - q^6} + \frac{q^4(1+q^4)^2}{1 - q^{10}} + \frac{q^6(1+q^6)^2}{1 - q^{14}} + \ldots}, \quad |q| < 1, \quad (1.3)
\]

A similar continued fraction is been previously studied by C. Adiga and N. Anitha [1].

In Section 2 we obtain an interesting q-identity related to \(A(q) \) using Ramanujan’s \(_1\psi_1 \) summation formula [5, Ch.16, Entry 17]

\[
\sum_{n=-\infty}^{\infty} \frac{(a)_n}{(b)_n} z^n = \frac{(az)_\infty (q/az)_\infty (q)_\infty (b/a)_\infty}{(z)_\infty (b/az)_\infty (b)_\infty (q/a)_\infty}, \quad \frac{|b|}{|a|} < |z| < 1. \quad (1.4)
\]

In Section 3 we obtain a product representation for \(A(q) \). In Section 4 we deduce several identities satisfied by \(A(q) \) with theta function \(\varphi(q) \) and \(\psi(q) \). In Section 5 we obtain an integral representation of \(A(q) \). Section 6 contains relationship of \(A(q) \) with ordinary hyper geometric series. We discuss modular equations of degree \(n \) with some illustration in Section 7. Finally, in Section 8 we present formula for explicit evaluation of \(A(q) \).

We conclude this introduction with few customary definition we make use in the sequel. For a and \(q \) complex number with \(|q| < 1\)

\[
(a)_\infty := (a; q)_\infty = \prod_{n=0}^{\infty} (1 - a q^n),
\]

\[
(a)_n := (a; q)_n = \prod_{k=0}^{n-1} (1 - a q^k) = \frac{(a)_\infty}{(aq^n)_\infty}, \quad n : \text{any integer},
\]

\[
f(a, b) = \sum_{n=0}^{\infty} a^{n(n+1)/2} b^{n(n-1)/2}
\]

\[
= (-a; ab)_\infty (-b; ab)_\infty (ab; ab)_\infty, \quad |ab| < 1. \quad (1.6)
\]

Identity (1.6) is the Jacobi’s triple product identity in Ramanujan’s notation [5, Ch. 16, Entry 19]. It follows from (1.5) and (1.6) that [5, Ch.16, Entry 22],

\[
\varphi(q) := f(q, q) = \sum_{n=-\infty}^{\infty} q^n = \frac{(-q; q)_{\infty}}{(q; -q)_{\infty}}, \quad (1.7)
\]

and
\[\psi(q) := f(q,q^3) = \sum_{n=-\infty}^{\infty} q^{n(n+1)/2} = \frac{(q^2;q^2)_\infty}{(q^4;q^4)_\infty}. \]

(1.8)

2. q-Identity Related to A (q)

Theorem 2.1

ii. \[A(q) = \frac{(q^4;q^4)_\infty^2}{(q^8;q^8)_\infty} \sum_{n=0}^{\infty} \frac{q^{4n}}{1+q^{4n+1}}. \]

(2.1)

Proof: Changing \(q \) to \(q^2 \), then setting \(a = -q^4 \), \(b = -q^{12} \) and \(z = q^4 \) in Ramanujan's \(\psi \) summation formula (1.4), we complete the proof of Theorem 2.1.

3. Product Representation for A (q)

Theorem 3.1. Let \(A(q) \) be defined by (1.3). Then

\[A(q) = \frac{\psi^2(q^8)}{\psi^2(q^4)}. \]

(3.1)

Proof: From [5, Ch. 16, Entry 11], for \(|q| < 1 \)

\[\frac{(-a)\omega(b) = -(a)\omega(-b) \omega a-b}{(-a)\omega(b) \omega + (a)\omega(-b) \omega} = \frac{(a-bq)(aq-b)}{1-q + \frac{1-q^3}{1-q^5} + \cdots}. \]

(3.2)

Rationalizing left hand side of (3.2) and then changing \(q \) to \(q^2 \), \(a \) to \(q \) and \(b \) to \(-q \) in the resulting identity, we obtain

\[\frac{\{(q^2;q^2)_\infty^2 - (q^2;q^2)_\infty^2\}^2}{(-q^2;q^2)_\infty^2} = 2q \frac{q^2(1+q^2)^2}{1-q^2} \frac{q^4(1+q^4)^2}{1-q^6} + \cdots. \]

(3.3)

Multiplying numerator and denominator of left hand side of (3.3) by \((q^2;q^2)_\infty^2\) and using (1.6), we obtain

\[\frac{(f(q,q) - f(-q,-q))^2}{f^2(q,q) - f^2(-q,-q)} = 2q \frac{q^2(1+q^2)^2}{1-q^2} \frac{q^4(1+q^4)^2}{1-q^6} + \cdots. \]

(3.4)

Employing [5, Ch. 16, Entry 30 (iii) and (vi)] in (3.4) we obtain

\[\frac{qf^2(1,q^8)}{f(1,q^4)\psi(q^4)} = 2q \frac{q^2(1+q^2)^2}{1-q^2} \frac{q^4(1+q^4)^2}{1-q^6} + \cdots. \]

(3.5)

Finally applying [5, Ch. 16, Entry 18 (ii)] and (1.8), we complete the proof of (3.1).

4. Some Identities Involving A (q)

We obtain several relations of \(A(q) \) in terms of theta functions \(\varphi(q) \) and \(\psi(q) \).

Theorem 4.1

\[A(q) = \frac{\psi^2(q^4)}{\psi^2(q^4)}. \]

(4.1)

\[A(q) = \frac{\psi(q^8)}{\varphi(q^8)}. \]

(4.2)

\[A(q) = \frac{\psi(-q^2)}{\varphi(-q^2)\varphi(q^4)}. \]

(4.3)
\[A(q) = \psi^2(q^4) \varphi(-q^8) \varphi(q^4)^3. \]
(4.12)

Proof: From (3.1) we have
\[uv = A(q) A_{\frac{1}{2}}(q) = \left(\frac{\psi(q^8)}{\psi(q^4)} \right)^3, \]
which completes the proof of (4.12).

Also from (3.1), we have
which completes the proof of (4.13).

5. Integral Representation of A (q)

Theorem 5.1 For 0<|q|<1,

\[
A(q) = \exp \int \frac{\psi(q^8)}{\psi(q^4)} dq,
\]

(5.1)

where \(\psi(q)\) is defined in (1.7).

Proof: Taking log on both sides of (3.1), we have

\[
\log A(q) = 2 \log \psi(q^8) - 2 \log \psi(q^4).
\]

(5.2)

Employing [5, Ch. 16, Entry 23(ii)] on right hand side of (5.2), we obtain

\[
\log A(q) = 2 \sum_{n=1}^{\infty} \frac{(-1)^n q^{4n}}{n(1+q^{4n})}.
\]

(5.3)

Differentiating (5.3) and simplifying, we have

\[
\frac{d}{dq} \log A(q) = \frac{8}{q} \sum_{n=1}^{\infty} \frac{(-1)^n q^{4n}}{(1+q^{4n})^2}.
\]

(5.4)

Using Jacobi’s identity [5, Ch. 16, Identity 33.5, pp. 54] and integrating both sides and finally exponentiating both sides of identity (5.4), we complete the proof of Theorem 4.1.

6. Relation Between A (q) and Hyper geometric Function

In this section we deduce relations between A (q) and hyper geometric function

\[
_2F_1(a, b; c; x),
\]

where

\[
_2F_1(a, b; c; x) = \sum_{k=0}^{\infty} \frac{(a)_k (b)_k}{(c)_k k!} x^k,
\]

|x|<1

(6.1)

Theorem 6.1

\[
x = k^2 = \frac{\psi(4q)}{\psi(q)}
\]

\[
q = \exp(-\pi 2F_1(1/2, 1/2; 1, 1-k^2)/2F_1(1/2, 1/2; 1, k^2),
\]

and

\[
z = _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; k^2\right)
\]

then

(i) \(A(q) = \frac{1}{q}\).
(ii) \(A(q) + \frac{1}{2q} \frac{1}{q^x} \left(1 + \sqrt{1-x} - 4 \sqrt[4]{(1-x)^3} \right). \)

Proof of (i): From [5, Ch. 17, Entry 11 (i), pp. 123], we have
\[
\psi(q) = \sqrt{\frac{1}{2} z(\frac{x}{q})^{1/8}}. \tag{6.2}
\]
Then employing (6.2) in (3.1) we obtain (i).

Proof of (ii): From [5, Ch. 17, Entry 11 (iv), (v), pp. 123] and (3.1), we have
\[
A(q) = \frac{1}{2q} \left(\frac{1-(\sqrt{1-x})}{1-\sqrt{1-x}} \right)^2. \tag{6.3}
\]
Rationalizing (6.3) and simple manipulation completes the proof of (ii).

7. Modular Equations of Degree \(n \)

In this section we obtain new modular equations of \(B(q) \), where \(B(q) = 2q A(q) \).

We say modulus \(\beta \) has degree \(n \) over the modulus \(\alpha \) when
\[
n \frac{\text{F}_2(1/2,1/2;;1-\alpha)/\text{F}_2(1/2,1/2;1:\alpha)}{\text{F}_2(1/2,1/2;;1-\beta)/\text{F}_2(1/2,1/2;1:\beta)} = \frac{\text{F}_2(1/2,1/2;;1-\alpha)}{\text{F}_2(1/2,1/2;1:\alpha)} = \frac{1}{\text{F}_2(1/2,1/2;;1-\beta)/\text{F}_2(1/2,1/2;1:\beta)}. \tag{7.1}
\]
where \(\text{F}_2(a, b; c; x) \) is defined as in (6.1). A modular equation of degree \(n \) is an equation relating \(\alpha \) and \(\beta \) induced by (7.1).

Theorem 7.1:

If \(q = \exp(-\pi \frac{\text{F}_2(1/2,1/2;1-\alpha)/\text{F}_2(1/2,1/2;1:\alpha)}{\text{F}_2(1/2,1/2;;1-\beta)/\text{F}_2(1/2,1/2;1:\beta)}) \),
then
\[
\alpha = 1 - \frac{1-B(q)}{1+B(q)}. \tag{7.3}
\]

Proof: On employing [5, Ch. 16, Entry 25 (ii)] and [5, Ch. 16, Entry 25(v)] in (3.1), we have
\[
A(q) = \frac{1}{2q} \left(\frac{1-\frac{\psi(-q)}{\psi(q)}}{1+\frac{\psi(-q)}{\psi(q)}} \right).
\]
Thus
\[
B(q) = \left(\frac{1-\frac{\psi(-q)}{\psi(q)}}{1+\frac{\psi(-q)}{\psi(q)}} \right). \tag{7.4}
\]
Also from [5, Ch. 17, Entry 5, pp. 100] and (7.2) it is implied that
\[
\alpha = 1 - \frac{\psi^n(-q)}{\psi^n(q)}. \tag{7.5}
\]
Using (7.5) in (7.4), we complete the proof of (7.3).

Let \(q \) and \(\alpha \) is related by (7.2). If \(\beta \) has degree \(n \) over \(\alpha \) then from Theorem 5.1, we obtain
\[
\beta = 1 - \left(\frac{1-B(q^n)}{1+B(q^n)} \right)^4 .
\]
(7.6)

Corollary 7.2 Let \(l = B(q) \), \(m = B(q^3) \), \(n = B(q^4) \), then

(i) \(l^4 - 4l^3m^3 + 6l^2m^2 - 4lm + m^4 = 0 \).

(ii) \(l^4 + l^4n^4 + 4l^4n^3 + 6l^4n^2 + 4l^4n - 8n^3 - 8n = 0 \).

Proof of (i): From [5, Ch. 19, Entry 5 (ii) pp. 230], we have

\[
(\alpha \beta)^{\frac{1}{4}} + [(1 - \alpha)(1 - \beta)]^{\frac{1}{4}} = 1 \]
(7.7)

On using (7.6) with \(n=3 \) and (7.3) in (7.7) and simplifying we complete the proof of Corollary 7.2. (i).

Proof of (ii): When \(\beta \) has degree 4 over \(\alpha \) then we have from [5, Ch. 18, Eq. (24.22) pp.215]

\[
\sqrt{\beta} = \left(\frac{1-(\alpha)^{\frac{1}{4}}}{1+(\alpha)^{\frac{1}{4}}} \right)^2 .
\]
(7.8)

On using (7.6) with \(n=4 \) and (7.3) in (7.8), we obtain

\[
\sqrt{1 - \left(\frac{1-n}{1+n} \right)^4} = \left(\frac{1-\left(\frac{1}{\alpha_{n}}\right)^{\frac{1}{4}}}{1+\left(\frac{1}{\alpha_{n}}\right)^{\frac{1}{4}}} \right)^2 .
\]

Squaring both sides of the above identity and simplifying we complete the proof of Corollary 7.2. (ii).

8. **Explicit Formula For The evaluation of A (q)**

Let \(q_n = e^{-\pi \sqrt{n}} \) and \(\alpha_n \) denote the corresponding values of \(\alpha \) in (7.2). From Theorem 7.1., we have

\[
B(e^{-\pi \sqrt{n}}) = \frac{1-(1-\alpha_n)^{\frac{1}{4}}}{1+(1-\alpha_n)^{\frac{1}{4}}} .
\]

Hence

\[
A(e^{-\pi \sqrt{n}}) = \frac{1}{2} e^{\pi \sqrt{n}} \frac{1-(1-\alpha_n)^{\frac{1}{4}}}{1+(1-\alpha_n)^{\frac{1}{4}}} .
\]
(8.1)

From [5, Ch. 17, pp. 97], we have \(\alpha_1 = \frac{1}{2}, \alpha_2 = \left(\sqrt{2} - 1 \right)^{2}, \alpha_4 = \left(\sqrt{2} - 1 \right)^{4} \). Thus from (8.1), we have

\[
A(e^{-\pi}) = \frac{1}{2} e^{\pi} \frac{1-\left(\frac{1}{2}\right)^{\frac{1}{4}}}{\frac{1}{2} + \left(\frac{1}{2}\right)^{\frac{1}{4}}} .
\]

\[
A(e^{-\pi \sqrt{2}}) = \frac{1}{2} e^{\pi \sqrt{2}} \left(\frac{1-\left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{4}}}{\frac{1}{\sqrt{2}} + \left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{4}}} \right),
\]

\[
A(e^{-2\pi}) = \frac{1}{2} e^{2\pi} \left(\frac{1-\left(-16+12\sqrt{2}\right)^{\frac{1}{4}}}{\frac{1}{16+12\sqrt{2}} + \left(\frac{1}{16+12\sqrt{2}}\right)^{\frac{1}{4}}} \right).
\]

The Ramanujan-Weber class invariant is defined by

\[
G_n = 2 \frac{1}{4} q_n^{-\frac{1}{24}} (-q_n; q_n^2)_\infty ,
\]
\[g_n = 2^{-\frac{1}{4}} q_n^{-\frac{1}{24}} (q_n; q_n^2)_\infty, \]

where \(q_n = e^{-\pi \sqrt{n}} \). Chan and Huang [7] have derived few explicit formula for evaluation of

\(S \left(e^{-\pi \sqrt{n/2}} \right) \) in terms of Ramanujan Weber class. Similar works are also carried out by Adiga et. al. [2]. Analogous to these works we obtain explicit formula for the evaluation of \(A(e^{-\pi \sqrt{n}}) \).

Theorem 8.1

For Ramanujan Weber class invariant as defined in (8.2) and let \(p = G_n^{12} \) and \(p_1 = g_n^{12} \), then

\[
A \left(e^{-\pi \sqrt{n}} \right) = \frac{1}{2} e^{\pi \sqrt{n}} \left[\frac{(2p(p + \sqrt{p^2 + 1} - 1))^{1/4} - (2p(p + \sqrt{p^2 + 1} - 1))^{1/4}}{(2p(p + \sqrt{p^2 + 1} - 1))^{1/4} + (2p(p + \sqrt{p^2 + 1} - 1))^{1/4}} \right], \tag{8.3}
\]

\[
A \left(e^{-\pi \sqrt{n}} \right) = \frac{1}{2} e^{-\pi \sqrt{n}} \left[\frac{1 - (2p_1(p_1 - [p_1^2 + 1]))^{1/4}}{1 + (2p_1(p_1 - [p_1^2 + 1]))^{1/4}} \right]. \tag{8.4}
\]

Proof: From [7, Eq. 4.7, pp. 85], we have

\[
G_n = \{4\alpha_n (1 - \alpha_n)\}^{-1/24}.
\]

Hence,

\[
\alpha_n = \frac{1}{\sqrt{p(p+1) + \sqrt{p(p-1)}}}. \tag{8.5}
\]

Using (8.5) in (8.1) we obtain (8.3).

Also from [7, Eq. 4.9, pp. 85], we have

\[
2g_n^{12} = \frac{1}{\sqrt{\alpha_n}} - \sqrt{\alpha_n}.
\]

Hence

\[
\sqrt{\alpha_n} = \sqrt{(p_1^2 + 1)} - p_1.
\]

Using (8.6) in (8.1) we obtain (8.4).

Examples:

Let \(n = 1 \). Since \(G_1 = 1 \), from Theorem 8.1 we have

\[
A \left(e^{-\pi} \right) = \frac{1}{2} e^{\pi \left(\frac{2^{1/4} - 1}{2^{1/4} + 1} \right)}.
\]

Let \(n = 2 \). Since \(g_2 = 1 \), from Theorem 8.1 we have

\[
A \left(e^{-\pi/\sqrt{2}} \right) = \frac{1}{2} e^{\pi \sqrt{2} \left(\frac{1 - (2 \sqrt{2} - 2)^{1/4}}{1 + (2 \sqrt{2} - 2)^{1/4}} \right)}.
\]

Let \(n = 3 \). Since \(G_3^{12} = 2 \), then Theorem 8.1 we have
Yudhisthira Jamudulia et.al/ On A Continued Fraction Identity From Ramanujan’s Notebook

\[A \left(e^{-\pi/\sqrt{3}} \right) = \frac{1}{2} e^{\pi \sqrt{3}} \frac{\left((8+4\sqrt{3})^{1/4} - (7+4\sqrt{3})^{1/4} \right)}{\left((8+4\sqrt{3})^{1/4} + (7+4\sqrt{3})^{1/4} \right)}. \]

Acknowledgement

The first author is thankful to UGC, New Delhi for awarding research project [No. F41-1392/2012/ (SR)] under which this work has been done.

References