SKOLEM GRACEFUL SIGNED GRAPHS ON DIRECTED GRAPHS

P. Shalini, **D. Paul Dhayabaran

*Cauvery College for Women, Tiruchirappalli, India.
**Bishop Heber College (Autonomous), Tiruchirappalli, India.

ARTICLE INFO

Corresponding Author
P. Shalini
Cauvery College for Women, Tiruchirappalli, India.
shalinisathiyamoorthy@yahoo.in

Key Words: Graceful Labelings, Graceful signed Graphs, Directed Graphs, Skolem Graceful Labelings.

ABSTRACT

In this paper, a new concept skolem graceful signed graphs on directed graphs has been introduced. A graph \(G(p, m, n) \) is a bijective function \(f: V(G) \rightarrow \{1,2,3,\ldots,p\} \) such that when each edge \(uv \in E(G) \) is assigned by \(f(uv) = f^+(v) - f^-(u) \) the positive edges receive distinct labels from the set \(\{1,2,3,\ldots,m\} \) and the negative edges receive distinct labels from the set \(\{-1,-2,-3,\ldots,-n\} \) is called a skolem graceful signed graphs. Moreover, some families of graphs which has skolem signed graphs are being coming under investigation.

INTRODUCTION

All Graphs in this paper are finite and directed. The symbols \(V(G) \) and \(E(G) \) denote the vertex set and edge set of a graph \(G \). The cardinality of the vertex set is called the order of \(G \) denoted by \(p \). The cardinality of the edge set is called the size of \(G \) denoted by \(q \) edges is called a \((p,q)\) graph. A graph labeling is an assignment of integers to the vertices or edges. Bloom and Hsu[2] extended the notion of graceful labeling to directed graphs. Graceful signed graphs \(f(uv) \) is the difference between \(f^+(v) \) and \(f^-(v) \)

\[f(uv) = |f^+(v) - f^-(u)| \]

where \(f^+(v) \) is the sum of the labels of all arcs with \(v \) as head and \(f^-(v) \) is the sum of the labels of all arcs with \(u \) as tail. In this paper, edges receives positive and negative signs.

Definition 1.1

Let \(G \) be a simple graph with order \(p \) and size \(q \). A function \(f: V(G) \rightarrow \{1,2,3,\ldots,p\} \) is called a graceful labeling if

i) \(f \) is one-to-one.

ii) the edges receive all the labels from \(1 \) to \(q \), where the label of an edge is computed to be the absolute value of the difference between the vertex labels at its ends i.e., if \(e = (u,v) \) then the label of \(e \) is \(|f(u) - f(v)| \).

Definition 1.2

If \(f: V(G) \rightarrow \{1,2,3,\ldots,p\} \) is a bijective mapping and \(f(uv) = |f(u) - f(v)| \) for all \(uv \in E(G) \). If \(f^+(E) = \{1,2,3,\ldots,q\} \), then \(f \) is called skolem graceful labeling.

Definition 1.3

A signed graph is a graph where edges are assigned positive or negative sign.

Definition 1.4

A graph \(G(p,m,n) \) is a bijective function \(f: V(G) \rightarrow \{1,2,3,\ldots,p\} \) such that when each edge \(uv \in E(G) \) is assigned by \(f(uv) = f^+(v) - f^-(u) \) the positive edges receive distinct labels from the set \(\{1,2,3,\ldots,m\} \) and the negative edge receive distinct labels from the set \(\{-1,-2,-3,\ldots,-n\} \) is called a skolem graceful signed graphs.

Theorem 1.1

For any positive integer \(n \), a path \(p_n \) is skolem graceful signed graphs.

Proof

The path consists of \(n \) vertices and \(n-1 \) edges. Let \(V(G) \) denotes the set of all vertices of \(G \) i.e., \(V(G) = \{v_1,v_2,v_3,\ldots,v_n\} \) Let \(E(G) \) denotes the set of all edges of \(G \) i.e., \(E(G) = \{e_1,e_2,e_3,\ldots,e_n\} \) Define \(f: V(G) \rightarrow \{1,2,3,4,\ldots,p\} \) as follows

\[f(v_i) = \begin{cases} i+1 & \text{if } i \text{ is odd} \\ (n+1)-i & \text{if } i \text{ is even} \end{cases} \]

\[f(e_i) = \begin{cases} i & \text{if } i \text{ is odd} \\ -i & \text{if } i \text{ is even} \end{cases} \]

The path \(p_n \) receives equal number of positive and negative edges when \(n \) is odd.

Therefore, the path \(p_n \) is skolem graceful directed signed graphs.

Theorem 1.2

For every positive integer \(n \), the star graph \(K_{1,n} \) is skolem graceful signed graphs.

Proof

The star graph \(G \) consists of \(n+1 \) vertices and \(n \) edges. Let \(v_0 \) be the centre vertex. If \(v_0 \) be the smallest value among \(v_1,v_2,v_3,\ldots \) it receives positive edges whereas \(v_0 \) is the largest value among \(v_1,v_2,v_3,\ldots \) it receives negative edges.

Define \(f: V(G) \rightarrow \{1,2,3,4,\ldots,p\} \) as follows

\[f(v_0) = 1 \]

\[f(v_i) = i+1; 1 \leq i \leq n \]

\[f(e_i) = i; 1 \leq i \leq n \]

Let \(f(v_0) = n \)
Shalini et.al/ Skolem Graceful Signed Graphs On Directed Graphs

G₁ receives positive edges and G₂ receives negative edges. Therefore, the star graph $k_{1,n}$ is a skolem graceful signed graphs.

Theorem 1.3
For every positive integer n, the flower graph is skolem graceful signed graphs.

Proof
The flower graph consists of $n+2$ vertices. Let $V(G)$ denotes the set of all vertices and $E(G)$ denotes the set of all edges. Define $f: V(G) \rightarrow \{1,2,3,\ldots,p\}$ as follows:

$$ f(v_i) = \begin{cases} i+1 & \text{if } i \text{ is odd} \\ \frac{(n+1) - i}{2} & \text{if } i \text{ is even} \end{cases} $$

Therefore, a flower graph is skolem graceful signed graphs.

Theorem 1.4
S graph is skolem graceful signed graphs off n is even.

Proof
S graph consists of n vertices and $n-1$ edges. Let $V(G)$ denotes the set of all vertices and $E(G)$ denotes the set of all edges. Define $f: V(G) \rightarrow \{1,2,3,\ldots,p\}$ as follows:

$$ f(v_i) = \begin{cases} \frac{i+1}{2} & \text{if } i \text{ is odd} \\ \frac{(n+1) - i}{2} & \text{if } i \text{ is even} \end{cases} $$

Therefore, S graph is skolem graceful signed graphs.

CONCLUSION
In this paper, a formula for labelings in skolem signed directed graphs has been established. Further, it has been proved that certain families of graphs are skolem signed directed graphs.

REFERENCES